基于模糊粗糙集的层次分类增量特征选择 |
| |
作者姓名: | 田秧 折延宏 |
| |
作者单位: | 西安石油大学 计算机学院,西安 710065;西安石油大学 理学院,西安 710065 |
| |
基金项目: | 国家自然科学基金项目(61976244,12001422);陕西省自然科学基金项目(2021JQ-580,2023-JC-YB-597) |
| |
摘 要: | 随着大数据时代的到来,数据的类标签数量急剧增加,对现有的分类任务带来了严峻的挑战。为了解决这个问题,人们通常将标签组织成层次结构,使用结构中所包含的信息来对任务进行学习。考虑样本的不断增加,使用模糊粗糙集信息熵设计了一种面向层次分类的增量特征选择算法。考虑兄弟策略,将现有的λ条件熵推广到了层次分类的情形,设计了一种非增量的层次分类特征选择算法,设计了λ增量条件熵,基于此设计了增量版本的特征选择算法。在实验中,采用了包括非增量版本在内的7种不同的特征选择算法在5个层次数据集上与增量算法进行比较,实验结果验证了2种算法的有效性,并且所设计的增量算法能在不影响性能的情况下加快特征选择的进程。
|
关 键 词: | 模糊粗糙集 特征选择 层次分类 增量学习 |
收稿时间: | 2023-05-25 |
修稿时间: | 2024-02-28 |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息 |
|
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文 |
|