首页 | 本学科首页   官方微博 | 高级检索  
     

稀疏网络编码中秩分布分析模型研究
引用本文:王练,王贺,李永恒,李仙. 稀疏网络编码中秩分布分析模型研究[J]. 重庆邮电大学学报(自然科学版), 2024, 36(3): 458-468
作者姓名:王练  王贺  李永恒  李仙
作者单位:重庆邮电大学 计算机科学与技术学院, 重庆 400065
基金项目:重庆邮电大学科研基金项目(A2020-212)
摘    要:针对现有稀疏网络编码研究中线性相关概率性能指标精准度较低的问题,提出基于马尔可夫链的性能分析模型。对线性相关概率、秩的概率分布等性能指标及其复杂度进行分析,并通过该性能分析模型分析编码包传输后期的译码成功概率;基于吸收马尔可夫链计算编码包传输过程中的瞬态、吸收态以及各状态间的状态转移概率,并对状态转移概率中蒙特卡罗模拟误差较大的问题进行改进,由状态转移概率构建吸收马尔可夫链基本矩阵,得出信宿端收到非再生包的线性相关概率,进而推导出秩的概率分布和译码成功概率性能指标。仿真结果表明,在相同条件下所提模型性能指标精确度均优于对比模型,且能精确地评估信宿端解码矩阵秩的概率分布、译码成功概率等稀疏网络编码的译码行为。

关 键 词:网络编码  稀疏网络编码  吸收马尔可夫链模型  线性相关概率  秩的概率分布
收稿时间:2023-05-15
修稿时间:2024-03-20

Research on rank distribution analysis model in sparse network coding
WANG Lian,WANG He,LI Yongheng,LI Xian. Research on rank distribution analysis model in sparse network coding[J]. Journal of Chongqing University of Posts and Telecommunications, 2024, 36(3): 458-468
Authors:WANG Lian  WANG He  LI Yongheng  LI Xian
Affiliation:School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
Abstract:To address the low accuracy of linear correlation probability performance indicators in current sparse network coding research, we propose a performance analysis model based on Markov chain. The performance indicators such as linear correlation probability and rank probability distribution and their complexity are analyzed, and the decoding success probability in the later stage of encoding packet transmission is analyzed through this performance analysis model. The model is based on absorbing Markov chain to compute the transient state, absorbing state and state transition probabilities during encoding packet transmission. Monte Carlo simulation errors in state transition probabilities are improved. Further, the basic matrix of absorbing Markov chain is constructed from state transition probabilities, and the linear correlation probability of non-innovative packets at receiver is obtained. The rank probability distribution and the decoding probability are deduced. Simulation results indicate that the performance metrics of this model are more accurate than those of other research models under the same conditions, and the decoding behavior of sparse network coding, such as the probability of rank distribution of the decoded matrix and the probability of decoding success, can be evaluated accurately.
Keywords:network coding  sparse network coding  absorbing Markov chain mode  linear correlation probability  probability of rank distribution
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号