首页 | 本学科首页   官方微博 | 高级检索  
     

基于模型融合的低照度环境下车道线检测方法
引用本文:顾德英,王娜,李文超,陈龙. 基于模型融合的低照度环境下车道线检测方法[J]. 东北大学学报(自然科学版), 2021, 42(3): 305-309. DOI: 10.12068/j.issn.1005-3026.2021.03.001
作者姓名:顾德英  王娜  李文超  陈龙
作者单位:(东北大学秦皇岛分校 控制工程学院, 河北 秦皇岛 066004)
基金项目:河北省自然科学基金资助项目
摘    要:针对低照度环境下车道线检测准确率低和稳定性差的问题,提出了一种基于模型融合的低照度车道线检测算法.采用基于ALTM(adaptive local tone mapping)算法改进的颜色平衡算法做数据增强处理,有利于车道线特征的提取;融合改进的Deeplabv3+模型和Unet模型,有效降低了过拟合现象;使用实例分割得...

关 键 词:低照度环境  车道线检测  数据增强  模型融合  实例分割
收稿时间:2020-08-18
修稿时间:2020-08-18

Method of Lane Line Detection in Low Illumination Environment Based on Model Fusion
GU De-ying,WANG Na,LI Wen-chao,CHEN Long. Method of Lane Line Detection in Low Illumination Environment Based on Model Fusion[J]. Journal of Northeastern University(Natural Science), 2021, 42(3): 305-309. DOI: 10.12068/j.issn.1005-3026.2021.03.001
Authors:GU De-ying  WANG Na  LI Wen-chao  CHEN Long
Affiliation:School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
Abstract:Aiming at the problem of low accuracy and poor stability of lane line detection in low illumination environment, an algorithm of lane line detection in low illumination environment based on model fusion was proposed. The improved color balance algorithm based on ALTM(adaptive local tone mapping) algorithm is adopted for data enhancement processing, which is beneficial for the extraction of lane line features. The improved Deeplabv3+model and Unet model are fused to reduce the overfitting. The segmented lane line image is obtained by instance segmentation. The experimental results show that the mean_IOU(mean intersection-over-union) values of the improved Unet model and Deeplabv3+model reach 0.625 and 0.646, respectively, which are 2% and 4.6% higher than the original model. The final fusion result increased by 0.01%. The stability and accuracy of lane line detection are promoted in low illumination environment.
Keywords:low illumination environment   lane line detection   data enhancement   model fusion   instance segmentation,
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号