首页 | 本学科首页   官方微博 | 高级检索  
     

基于宽度学习的浓密机底流浓度软测量
作者姓名:贾润达  胡慧明  张树磊
作者单位:(东北大学 信息科学与工程学院, 辽宁 沈阳110819)
基金项目:国家自然科学基金资助项目(61873049); 中央高校基本科研业务费专项资金资助项目(N180704013).
摘    要:由于浓密脱水过程中浓密机的底流浓度难以在线检测,本文提出了一种基于宽度学习的软测量建模方法,用以解决底流浓度的在线检测问题.该方法精度高,泛化能力强.首先,在浓密机内部安装压力传感器,建立正常工况下的历史数据集;然后,利用宽度学习系统对软测量模型进行训练,从而实现浓密机底流浓度的在线预测;最后,通过仿真实验验证了该方法...

关 键 词:浓密机  宽度学习  底流浓度  软测量  深度学习
修稿时间:2020-12-30
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号