首页 | 本学科首页   官方微博 | 高级检索  
     

动态模糊神经网络研究
引用本文:王京慧,李宏光. 动态模糊神经网络研究[J]. 北京化工大学学报(自然科学版), 2003, 30(2): 78-81
作者姓名:王京慧  李宏光
作者单位:北京化工大学信息科学与技术学院,北京,100029;北京化工大学信息科学与技术学院,北京,100029
摘    要:针对静态网络无法处理暂态问题,对具有递归环节的动态模糊神经网络进行了研究。通过在网络第二层中加入内部反馈连接,使其具有动态映射能力,从而对动态系统有更好的响应。网络使用遗传算法与反向传播BP(BackPropagation)算法相结合来训练,避免陷入局部最优解。采用时序预测和动态非线性系统进行了仿真研究,结果表明,动态模糊神经网络较之普通模糊神经网络在收敛速度、预测精度和网络规模等方面都有较大的改善,并具有更好的动态系统处理能力。

关 键 词:模糊神经网络  递归  动态系统  遗传算法
修稿时间:2002-04-10

On dynamic fuzzy neural network
WANG Jing hui LI Hong guang. On dynamic fuzzy neural network[J]. Journal of Beijing University of Chemical Technology, 2003, 30(2): 78-81
Authors:WANG Jing hui LI Hong guang
Affiliation:College of Information Science and Technology; Beijing University of Chemical Technology; Beijing; China
Abstract:Since a static fuzzy neural network cannot deal with the temporal problem, a dynamic fuzzy neural network (DFNN) with recurrent units is proposed. DFNN is constructed by adding feedback connections in the second layer of the fuzzy neural network, so it has the ability of dynamic mapping and can cope with the dynamic systems. The network is trained using the genetic algorithm and BP algorithm to avoid being trapped in the local convergence. The DFNN was applied to the time series prediction and the identification dynamic nonlinear system. The results show that DFNN has a better performance in converging speed and has a small network size, it also has the stronger ability of handling the dynamic systems.
Keywords:fuzzy neural network  recurrent  dynamic system  genetic algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京化工大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《北京化工大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号