首页 | 本学科首页   官方微博 | 高级检索  
     

基于个体差异移民的改进元胞遗传算法
引用本文:鲁宇明,黎明,李凌,杨红雨. 基于个体差异移民的改进元胞遗传算法[J]. 系统工程与电子技术, 2011, 33(3): 690-693. DOI: 10.3969/j.issn.1001-506X.2011.03.44
作者姓名:鲁宇明  黎明  李凌  杨红雨
作者单位:1. 南京航空航天大学自动化学院, 江苏 南京 210016;2. 南昌航空大学无损检测教育部重点实验室, 江西 南昌 330063;3. 北京航空航天大学电子信息工程学院, 北京 100191
基金项目:国家自然科学基金,航空科学基金,江西省教育厅科技研究项目(GJJ08209)资助课题
摘    要:针对灾变元胞遗传算法中的精英策略,在求解具有欺骗性的优化问题时易陷入次优解的情况,分析了几种移民策略。提出了一种基于个体差异的新移民策略,在灾变发生后,灾难区域以这种新的移民策略迁移个体。通过两个具有欺骗性典型函数的实验,表明在灾变机制元胞遗传算法中采用新的移民策略能提高数值优化函数的精度和收敛率,具有更好的全局搜索和局部搜索性。

关 键 词:元胞遗传算法  灾变  精英策略  多样性

Improved cellular genetic algorithm based on migration of different individuals
LU Yu-ming,LI Ming,LI Ling,YANG Hong-yu. Improved cellular genetic algorithm based on migration of different individuals[J]. System Engineering and Electronics, 2011, 33(3): 690-693. DOI: 10.3969/j.issn.1001-506X.2011.03.44
Authors:LU Yu-ming  LI Ming  LI Ling  YANG Hong-yu
Affiliation:

1. College of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;;2. Key Laboratory of Nondestructive Testing (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China;3. College of Electronic and Information Engineering, Beihang University, Beijing 100191, China

Abstract:It is prone to get stuck in local optima, while solving the optimization problem with deception by cellular genetic algorithms with disaster, in which an elitism is applied. Several migration strategies are analyzed, and a novel migration strategy is presented. After the disaster occurres, those different individuals that are elitism are placed in the disaster region. Two typical functions are tested. The experiment results show that the cellular genetic algorithms with new migration strategy can improve the optimization accuracy and convergence rate as well as have better characters of exploration and exploitation.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号