首页 | 本学科首页   官方微博 | 高级检索  
     

基于EMD优化NAR动态神经网络的地铁客流量短时预测模型
引用本文:马飞虎,金依辰,孙翠羽. 基于EMD优化NAR动态神经网络的地铁客流量短时预测模型[J]. 应用科学学报, 2020, 38(6): 936-943. DOI: 10.3969/j.issn.0255-8297.2020.06.010
作者姓名:马飞虎  金依辰  孙翠羽
作者单位:华东交通大学 土木建筑学院, 江西 南昌 330013
基金项目:测绘地理信息行业科研专项(No.201512027,No.201512021);江西省数字国土重点实验室开放研究基金(No.DLLJ201605);江西省重点研发计划项目(No.20161BBG70079);江西省科技支撑项目(No.2000616080)资助
摘    要:为了能够更加准确地实现地铁客流预测,提出了一种基于经验模态分解算法(empirical mode decomposition, EMD)优化非线性自回归(nonlinear auto regressive,NAR)动态神经网络的地铁客流量短时预测模型.分析地铁客流量数据后发现日客流量具有一定的变化规律,为此使用了基于时间序列的NAR动态神经网络,该网络具有优秀的非线性动态拟合能力和反馈记忆的功能.结合EMD经验模态分解算法优化NAR动态神经网络预测模型,以此来减少预测误差,提高预测精度.结果显示,EMD-NAR神经网络组合预测模型适用于地铁客流的短时预测,预测精度可达93%,具有较好的应用价值.

关 键 词:地铁客流量  短时预测  非线性自回归动态神经网络  经验模态分解  组合模型
收稿时间:2019-07-18

Short-Term Prediction Model of Subway Passenger Flow Based on EMD Optimized NAR Dynamic Neural Network
MA Feihu,JIN Yichen,SUN Cuiyu. Short-Term Prediction Model of Subway Passenger Flow Based on EMD Optimized NAR Dynamic Neural Network[J]. Journal of Applied Sciences, 2020, 38(6): 936-943. DOI: 10.3969/j.issn.0255-8297.2020.06.010
Authors:MA Feihu  JIN Yichen  SUN Cuiyu
Affiliation:School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, Jiangxi, China
Abstract:In order to forecast the subway passenger flow more accurately, a short-term prediction model of subway passenger flow based on empirical mode decomposition (EMD) optimization of nonlinear auto regressive (NAR) dynamic neural network is proposed. First, by analyzing subway passenger flow data, we find that the daily passenger flow performs in a certain change rule. Second, we select a time-based NAR dynamic neural network, which has excellent nonlinear dynamic fitting ability and feedback memory function. Furthermore, in order to reduce prediction errors and improve prediction accuracy, we use EMD empirical mode decomposition algorithm to optimize the NAR dynamic neural network prediction model. Simulation results show that the EMD-NAR neural network combined prediction model is well applicable for short-term prediction of subway passenger flow with high prediction result accuracy about 93%.
Keywords:subway passenger flow  short-term prediction  nonlinear auto regressive (NAR) dynamic neural network  empirical mode decomposition (EMD)  combined model  
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号