首页 | 本学科首页   官方微博 | 高级检索  
     

高光谱图像分块压缩感知采样及谱间预测重构
引用本文:贾应彪,冯燕,袁晓玲,魏江. 高光谱图像分块压缩感知采样及谱间预测重构[J]. 应用科学学报, 2014, 32(3): 281-286. DOI: 10.3969/j.issn.0255-8297.2014.03.009
作者姓名:贾应彪  冯燕  袁晓玲  魏江
作者单位:西北工业大学电子信息学院,西安710129
基金项目:国家自然科学基金(No.61071171)资助
摘    要:压缩感知理论提供了一种新的数据采集思路. 基于该理论提出了一种高光谱数据采集和图像重构方法,以波段分组的方式将高光谱各波段分为参考波段和普通波段,对各波段图像单独采用分块压缩感知测量以获取高光谱数据. 在图像重构过程中,参考波段采用平滑投影Landweber算法重构. 对于普通波段,结合谱间预测和平滑投影Landweber提出了一种新算法: 先采用谱间双向预测得到预测图像,然后对预测图像进行分块压缩感知测量获得测量值,并计算它与该波段原测量值之间的差值,再由测量差值重构预测差值来迭代恢复原波段图像. 该方法在数据重构过程中充分考虑了高光谱图像的谱间相关性和空间相关性,能提高图像重构精度. 实验结果表明,利用所提出的方法重构高光谱图像,其性能优于多向量压缩感知方法和分块压缩感知测量后直接对各波段图像单独重构的方法.

关 键 词:高光谱图像  压缩感知  分块测量  谱间双向预测  重构  
收稿时间:2012-04-06
修稿时间:2012-11-28

Block Compressed Sensing Sampling and Reconstruction Using Spectral Prediction for Hyperspectral Images
JIA Ying-biao,FENG Yan,YUAN Xiao-ling,WEI Jiang. Block Compressed Sensing Sampling and Reconstruction Using Spectral Prediction for Hyperspectral Images[J]. Journal of Applied Sciences, 2014, 32(3): 281-286. DOI: 10.3969/j.issn.0255-8297.2014.03.009
Authors:JIA Ying-biao  FENG Yan  YUAN Xiao-ling  WEI Jiang
Affiliation:School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China  
Abstract:Compressed sensing (CS) provides a new method for data acquisition. Ahyperspectral images CS
methodology is proposed in this paper. In the proposed framework, hyperspectral images are divided into
several groups, and each group consists of a reference band followed by some common bands. Random measurements of the individual spectral bands are obtained using block CS independently. In image reconstruction,the reference bands are reconstructed with the smoothed projected Landweber algorithm, and the common bands with a new reconstruction algorithm. The algorithm is implemented as follows: 1) Obtain predicted values of the common bands using the spectral bidirectional prediction. 2) Calculate measurement differences using block observation on the predicted values. 3) Reconstruct the images and their corresponding prediction differences in an iterative fashion. This method can improve reconstruction quality as it has fully considered the spectral and spatial correlations. Experimental results reveal that reconstruction performance of the proposed method is substantially superior to that by applying 2-D image reconstruction independently and that of a multiple-vector CS variant method.
Keywords: hyperspectral image  compressed sensing (CS)   block observation  spectral bidirectional prediction  reconstruction  
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号