首页 | 本学科首页   官方微博 | 高级检索  
     

空中目标辐射源的个体识别方法
引用本文:刘明骞,颜志文,张俊林. 空中目标辐射源的个体识别方法[J]. 系统工程与电子技术, 2019, 41(11): 2408-2415. DOI: 10.3969/j.issn.1001-506X.2019.11.02
作者姓名:刘明骞  颜志文  张俊林
作者单位:西安电子科技大学综合业务网理论及关键技术国家重点实验室, 陕西 西安 710071
摘    要:针对传统的辐射源个体识别方法在低信噪比环境下识别性能不佳的问题,提出了一种空中目标辐射源的个体识别方法,该方法利用经验模态分解和变分模态分解得到信号不同频率的模态分量,将各模态分量的多尺度排列熵作为特征,利用主成分分析对数据进行降维,并采用支持向量机分类器进行辐射源个体识别。仿真结果表明,该方法对相位噪声、频率漂移以及谐波失真等细微特征的识别性能明显优于传统方法,并具有良好的抗噪性。

关 键 词:辐射源个体识别  细微特征  模态分解  多尺度排列熵  支持向量机  

Specific emitter identification method for aerial target
LIU Mingqian,YAN Zhiwen,ZHANG Junlin. Specific emitter identification method for aerial target[J]. System Engineering and Electronics, 2019, 41(11): 2408-2415. DOI: 10.3969/j.issn.1001-506X.2019.11.02
Authors:LIU Mingqian  YAN Zhiwen  ZHANG Junlin
Affiliation:State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China
Abstract:For the problem of the poor performance of traditional specific emitter identification methods in low signal to noise ratio (SNR) environments, a method of specific emitter identification for the aerial target is proposed. Empirical mode decomposition and variational mode decomposition are employed to obtain modal components of different frequencies of the signals, and multi-scale entropy of each modal component is taken as features. The principal component analysis is used to reduce the dimensions of the features, and the support vector machine is used as a classifier to identify the specific emitter identification. Simulation results show that the proposed method has better recognition and anti-noise performance for fine features such as phase noise, frequency drift and harmonic distortion than the traditional methods.
Keywords:specific emitter identification (SEI)  fine features  mode decomposition  multi-scale permutation entropy   support vector machine (SVM)  
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号