首页 | 本学科首页   官方微博 | 高级检索  
     

两人交叉规划问题的最优整体差解
引用本文:徐新生,孙建武. 两人交叉规划问题的最优整体差解[J]. 山东大学学报(理学版), 2008, 43(12): 52-55
作者姓名:徐新生  孙建武
作者单位:滨州学院数学与信息科学系,山东,滨州,256603;滨州学院数学与信息科学系,山东,滨州,256603
基金项目:浙江省自然科学基金,滨州学院科研基金 
摘    要:引进了两人交叉规划问题的一种最优解概念: t* -最优整体差解,该解可以通过求解一个相应的数学规划问题得到。讨论了决策者具有不同让步值的t* -最优整体差解,给出了两人交叉规划问题的t* -最优整体差解和s-最优联合解之间的联系。数值例子表明该方法对于求解两人交叉规划问题具有一定的有效性。

关 键 词:交叉规划问题  s-最优联合解  t*-最优整体差解
收稿时间:2008-07-07

An optimal integral differential solution for a two-person Interaction programming problem
XU Xin-sheng,SUN Jian-wu. An optimal integral differential solution for a two-person Interaction programming problem[J]. Journal of Shandong University, 2008, 43(12): 52-55
Authors:XU Xin-sheng  SUN Jian-wu
Affiliation:Department of Mathematics and Information Science, Binzhou University, Binzhou 256603, Shandong, China
Abstract:A new concept called the t-optimal integral differential solution for a two-person interaction programming problem(IPP) was introduced,where t is a non-negative constant.It can be shown that the t-optimal integral differential solution is equivalent to the optimal solution for another mathematical programming problem.In addition,the t-optimal integral differential solution that the giving-up value of each decision maker is different was discussed,the relation between the t-optimal integral differential solution and the s-optimal joint solution was also presented.A numerical example illustrated that the method presented here is efficient for solving a two-person interaction programming problem.
Keywords:interaction programming problem  s-optimal joint solution  t-optimal integral differential solution
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《山东大学学报(理学版)》浏览原始摘要信息
点击此处可从《山东大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号