首页 | 本学科首页   官方微博 | 高级检索  
     

基于插值-拟合-迁移学习算法的机载设备故障概率预测
引用本文:顾涛勇,郭建胜,李正欣,王健,王腾蛟. 基于插值-拟合-迁移学习算法的机载设备故障概率预测[J]. 系统工程与电子技术, 2018, 40(1): 114-118. DOI: 10.3969/j.issn.1001-506X.2018.01.17
作者姓名:顾涛勇  郭建胜  李正欣  王健  王腾蛟
作者单位:空军工程大学装备管理与安全工程学院, 陕西 西安 710051
摘    要:针对不同工作环境的机载设备故障概率预测问题,提出自适应权重的插值-拟合-迁移学习 (interpolation-fitting-transfer learning, ITF)算法。算法根据数据量和数据特征(分布相似度和信息熵)对插值、拟合、迁移学习赋予一定的权重进行线性组合。插值和拟合方法可以对故障频率进行平滑,而迁移学习可以规避数据贫化所引起的预测风险。分析该方法的可行性,通过仿真实例展示算法在预测准确度上的优势,并讨论算法中仍待解决的问题和下一步的工作。


Airborne equipment fault probability prediction based oninterpolation-fitting-transfer learning algorithm
GU Taoyong,GUO Jiansheng,LI Zhengxin,WANG Jian,WANG Tengjiao. Airborne equipment fault probability prediction based oninterpolation-fitting-transfer learning algorithm[J]. System Engineering and Electronics, 2018, 40(1): 114-118. DOI: 10.3969/j.issn.1001-506X.2018.01.17
Authors:GU Taoyong  GUO Jiansheng  LI Zhengxin  WANG Jian  WANG Tengjiao
Affiliation:Equipment Management and Security Engineering College, Air Force Engineering University, Xi’an 710051, China
Abstract:To solve the multi- operating environment airborne equipment fault probability prediction problem, a self-adaptive weighted interpolation-fitting-transfer learning (ITF)algorithm is proposed. On the basis of data size and data feature (distribution similarity and information entropy), the algorithm adjusts the weight of interpolation, fittingand transfer learning. The conventional interpolation and fitting method can smooth the fault frequency curve, and transfer learning can reduce the prediction risk causedby data dilution. The analysis and simulation demonstrate that the ITF algorithm is acceptable in time complexity and has higher prediction accuracy.
Keywords:
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号