首页 | 本学科首页   官方微博 | 高级检索  
     

基于Haar小波变换和分块DCT的人耳识别
引用本文:赵海龙,穆志纯,丁文魁,张霞. 基于Haar小波变换和分块DCT的人耳识别[J]. 北京大学学报(自然科学版), 2009, 45(2): 243-247
作者姓名:赵海龙  穆志纯  丁文魁  张霞
作者单位:1.北京科技大学信息工程学院,北京100083;2.北京大学计算机科学技术系,北京100871;?,E-mail:mu@ies.ustb.edu.cn
基金项目:国家自然科学基金,北京市教委重点学科共建项目 
摘    要:提出一种新的对人耳图像进行降维的方法。先对人耳图像进行二维的离散小波分解,然后再对小波分解后得到的低频信息施行分块离散余弦变换,进而获得图像的特征向量。实验证明,该方法与模式识别领域中广泛应用的PCA-LDA方法相比,在识别率大体相当的前提下,具有计算量小、降维速度快的优点,是对人耳图像进行特征提取的一种有效的手段。

关 键 词:人耳识别  小波变换  Haar小波  离散余弦变换  分块DCT  
收稿时间:2008-04-03

Ear Recognition Based on Wavelet Transform and Block DCT
ZHAO Hailong,MU Zhichun,DING Wenkui,ZHANG Xia. Ear Recognition Based on Wavelet Transform and Block DCT[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(2): 243-247
Authors:ZHAO Hailong  MU Zhichun  DING Wenkui  ZHANG Xia
Affiliation:1. School of Information Engineering, University of Science and Technology Beijing, Beijing 100083;2. School of Electronics Engineering and Computer Science, Peking University, Beijing 100871; , E-mail: mu@ies.ustb.edu.cn
Abstract:A new dimension reduction method was proposed based on two-dimension discrete wavelet decomposition and block discrete cosine transform. The new method was compared with the famous PCA-LDA method which was widely used for feature extraction and dimension reduction in pattern recognition. The experimental results show that the new method could get approximately equal retrieval accuracy to PCA-LDA method,but it performed better in calculation complexity and speed than the latter. So the proposed method is an ...
Keywords:ear recognition  wavelet transform  Haar wavelet  discrete cosine transform  block DCT  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《北京大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号