首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的盾构隧道施工地表沉降预测方法
引用本文:尹泉, 周怡, 饶军应. 基于深度学习的盾构隧道施工地表沉降预测方法[J]. 中南大学学报(自然科学版), 2024, 55(2): 607-617.DOI:10.11817/j.issn.1672-7207.2024.02.014
作者姓名:尹泉  周怡  饶军应
作者单位:1.湖南城市学院 城市地下基础设施结构安全与防灾湖南省工程研究中心,湖南 益阳,413000;2.贵州大学 空间结构研究中心,贵州 贵阳,550025
基金项目:湖南省自然科学基金资助项目(2022JJ50281);;国家留学基金委资助项目(202308430166)~~;
摘    要:针对现有盾构隧道施工引发地表沉降预测方法中存在的难以同时挖掘数据之间的非线性特征关系和双向时序信息的问题,通过融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)与自注意力机制(SA)提出一种基于深度学习的地表最大沉降预测方法(CNN-BiLSTM-SA)。该方法首先利用CNN提取网络输入数据之间的非线性特征关系,利用BiLSTM网络提取输入数据的双向时序信息,然后引入SA机制为CNN提取的特征分配相应的权重,有效捕获时间序列中的关键信息,最后通过全连接层输出最终地表沉降预测结果。以湖南万家丽路电力盾构隧道工程为依托构建地表沉降数据集,并选用ANN、RNN、LSTM、BiLSTM模型开展对比分析。研究结果表明:评估指标CNN-BiLSTM-SA的平均绝对误差(MAE)、均方根(RMSE)、决定系数(R2)、平均绝对百分误差(MAPE)均为最优,具有更好的地表沉降预测性能。

关 键 词:盾构隧道  地表沉降  深度学习  神经网络
收稿时间:2023-06-26
修稿时间:2023-10-17
点击此处可从《中南大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《中南大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号