Numerical simulation on the microstress and microstrain of low Si-Mn-Nb dual-phase steel |
| |
Authors: | Hai-feng Dong Jing Li Yue Zhang Joongkeun Park Qing-xiang Yang |
| |
Affiliation: | (1) Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran; |
| |
Abstract: | According to the stress-strain curves of single-phase martensite and single-phase ferrite steels, whose compositions are similar to those of martensite and ferrite in low Si-Mn-Nb dual-phase steel, the stress-strain curve of the low Si-Mn-Nb dual-phase steel was simulated using the finite element method (FEM). The simulated result was compared with the measured one and they fit closely with each other, which proves that the FE model is correct. Based on the FE model, the microstress and microstrain of the dual-phase steel were analyzed. Meanwhile, the effective factors such as the volume fraction of martensite and the yield stress ratio between martensite and ferrite phases on the stress-strain curves of the dual-phase steel were simulated, too. The simulated results indicate that for the low Si-Mn-Nb dual-phase steel, the maximum stress occurs in the martensite region, while the maximum strain occurs in the ferrite one. The effect of the volume fraction of martensite (f M) and the yield stress ratio on the stress-strain curve of the dual-phase steel is small in the elastic part, while it is obvious in the plastic part. In the plastic part of this curve, the strain decreases with the increase of f M, while it decreases with the decrease of the yield stress ratio. |
| |
Keywords: | |
本文献已被 万方数据 SpringerLink 等数据库收录! |
| 点击此处可从《矿物冶金与材料学报》浏览原始摘要信息 |
|
点击此处可从《矿物冶金与材料学报》下载免费的PDF全文 |
|