首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法的故障样本优化选取方法
引用本文:邓露,许爱强,吴忠德. 基于遗传算法的故障样本优化选取方法[J]. 系统工程与电子技术, 2015, 37(7): 1703-1708. DOI: 10.3969/j.issn.1001-506X.2015.07.36
作者姓名:邓露  许爱强  吴忠德
作者单位:海军航空工程学院飞行器检测与应用研究所, 山东 烟台 264001
摘    要:为降低测试性验证试验费用,提出基于遗传算法的故障样本优化选取方法。方法通过故障-测试关联分析和故障-故障等价分析,确定初始故障样本集中各元素对应的等价集,并对初始故障样本集进行扩展,在此基础上,建立了故障样本选取优化求解模型。在不降低样本注入数量和测试特性的条件下,以试验费用最小为优化目标,给出了基于改进遗传算法的样本优化选取方法。算例应用结果表明,该方法设计的故障样本选取方法能有效降低测试性验证试验费用。


Method of failure sample optimization selection based on genetic algorithm
DENG Lu,XU Ai-qiang,WU Zhong-de. Method of failure sample optimization selection based on genetic algorithm[J]. System Engineering and Electronics, 2015, 37(7): 1703-1708. DOI: 10.3969/j.issn.1001-506X.2015.07.36
Authors:DENG Lu  XU Ai-qiang  WU Zhong-de
Affiliation:Research Institute of Aircraft Detection and Application, Naval Aeronautical and;Astronautical University, Yantai 264001, China
Abstract:Aiming to the cost of testability verification experiment, a method of failure sample optimization selection based on the genetic algorithm is proposed. Through the analyses of fault test correlation and fault-fault equivalent, the alternative failure sample concentration equivalent set of each element is determined and the extension alternative failure sample set is established. On this basis the solving model of failure sample optimization selection is set up. Without reducing the sample injection quantity and the characteristics of the test conditions, the coding model of sample optimization selection is built by using the generalized chromosome. A method of failure sample selection and sequence injection is put forward based on the genetic algorithm, which takes the minimum cost as the optimization goal. Finally, an example results show that this method can effectively reduce the test cost.
Keywords:
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号