首页 | 本学科首页   官方微博 | 高级检索  
     

基于长期验潮数据的海平面预测方法与案例应用
引用本文:段晓峰,许学工,陈满春,李响. 基于长期验潮数据的海平面预测方法与案例应用[J]. 北京大学学报(自然科学版), 2014, 50(6): 1065-1070
作者姓名:段晓峰  许学工  陈满春  李响
作者单位:1. 北京大学城市与环境学院, 地表过程分析与模拟教育部重点实验室, 北京 100871; 2. 国家海洋信息中心, 天津 300171;
基金项目:国家自然科学基金(40830746,41271102);中国博士后科学基金(2012M510258)资助
摘    要:在充分考虑长时间序列潮位具有周期性、趋势性和随机性特征的基础上, 建立一套基于随机动态预测模型的海平面变化分析方法。模型中的周期项模拟首次采用小波分析与谱分析相结合的方法; 趋势项采用逐步回归法拟合; 残差序列采用自回归移动平均混合模型进行拟合; 三项叠加建立随机动态预测模型, 参数的确定采用非线性最小二乘迭代法。应用塘沽验潮站57年的月平均海平面高度数据进行案例分析, 通过实测数据验证和预测精度统计学检验, 表明此方法对海平面变化的模拟与预测具有较高精度, 可为海平面上升预测研究提供有效可行的借鉴与范例。

关 键 词:海平面  预测  验潮数据  随机动态模型  方法与案例  
收稿时间:2013-05-28

Methodology and Case Study of Sea Level Prediction Based on Secular Tide Gauge Data
DUAN Xiaofeng;XU Xuegong;CHEN Manchun;LI Xiang. Methodology and Case Study of Sea Level Prediction Based on Secular Tide Gauge Data[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(6): 1065-1070
Authors:DUAN Xiaofeng  XU Xuegong  CHEN Manchun  LI Xiang
Affiliation:1. College of Urban and Environmental Sciences, Laboratory for Earth Surface Process of Ministry of Education, Peking University, Beijing 100871; 2. National Marine Data and Information Service, Tianjin 300171;
Abstract:Based on the periodic, trending, and stochasticcharacteristics of secular tide gauge data, a predictive methodology using stochastic-dynamic model was present to the sea level change research. The periodic term was resolved by wavelet and spectrum analysis. Stepwise regression was applied to the trending term analysis. The residual sequence was fitted by autoregression moving average model. Least-squares iteration method was applied for parameter estimation ofthe superposition model, which was composed of significant period model, trending term model and the residual sequenceautoregression moving average model. The stochasticdynamic model is applied to 57 years’monthly mean sea level data from Tanggu tide gauge for case study. The results show that the predictive methodology based on stochastic-dynamic model is feasible and efficient in sea level change prediction. Considering the high accuracy of modeling and predicting, this methodology can be used as a reference for future studies in sea level change.
Keywords:sea level  prediction  tide gauge data  stochasticdynamic model  methodology and case study  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《北京大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号