首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于分类精度的特征选择支持向量机
引用本文:易超群,李建平,朱成文. 一种基于分类精度的特征选择支持向量机[J]. 山东大学学报(理学版), 2010, 45(7): 119-121
作者姓名:易超群  李建平  朱成文
作者单位:国防科学技术大学理学院, 湖南 长沙 410073
摘    要:在综合序列前向选择(sequential forward selection,SFS)方法和广义序列前向选择(generalized sequential forward selection,GSFS)方法的基础上,提出了基于分类精度的特征选取(sequential forward selection based on classification accuracy, CA-SFS)方法。它依次改变GSFS方法中的r值,并以支持向量机(support vector machine,SVM)作为分类器,将得出的分类精度作为准则函数对特征进行取舍。仿真实验表明CA-SFS算法不但选择了较少的特征,而且取得了较好的分类效果。

关 键 词:特征选择  支持向量机  分类精度  仿真,
收稿时间:2010-04-02

A kind of feature selection based on classification accuracy of SVM
YI Chao-qun,LI Jian-ping,ZHU Cheng-wen. A kind of feature selection based on classification accuracy of SVM[J]. Journal of Shandong University, 2010, 45(7): 119-121
Authors:YI Chao-qun  LI Jian-ping  ZHU Cheng-wen
Affiliation:College of Science, National University of Defense Technology, Changsha 410073, Hunan, China
Abstract:The sequential forward selection based on classification accuracy (CA-SFS) was proposed by associating sequential forward selection (SFS) with generalized sequential forward selection (GSFS). It varied the value of r in GSFS and employs SVM (support vector machine)as the classifier. The classification accuracy  was taken as a criterion to decide the retention or elimination of features. Simulations showed that CA-SFS performed  well both in selecting fewer features and classifying samples.
Keywords:feature selection   support vector machine   classification accuracy   simulation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《山东大学学报(理学版)》浏览原始摘要信息
点击此处可从《山东大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号