首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM数据融合的实时粒子滤波算法
引用本文:蒋蔚,伊国兴,曾庆双. 基于SVM数据融合的实时粒子滤波算法[J]. 系统工程与电子技术, 2010, 32(6): 1334-1338. DOI: 10.3969/j.issn.1001-506X.2010.06.046
作者姓名:蒋蔚  伊国兴  曾庆双
作者单位:哈尔滨工业大学航天学院, 黑龙江 哈尔滨 150001
基金项目:"十一五"国防预研项目资助课题 
摘    要:采用粒子滤波的目标跟踪算法在粒子数目较多时计算量大、实时性差,针对该问题提出了一种新的基于支持向量机数据融合的实时粒子滤波算法。该算法在估计窗实时粒子滤波的基础上,使用支持向量机融合窗内不同时刻粒子集,并根据融合的结果更新粒子权值,实现对目标状态的快速跟踪。相对于原算法采用最小化Kullback-Leibler距离来调整估计窗混合分布的权值,该方法的计算复杂度低、速度快,进一步提高了算法的实时性。对纯角度目标跟踪问题的仿真结果表明了该算法的可行性和有效性。

关 键 词:目标跟踪  支持向量机  实时粒子滤波  数据融合

Real-time particle filter based on data fusion with support vector machines
JIANG Wei,YI Guo-xing,ZENG Qing-shuang. Real-time particle filter based on data fusion with support vector machines[J]. System Engineering and Electronics, 2010, 32(6): 1334-1338. DOI: 10.3969/j.issn.1001-506X.2010.06.046
Authors:JIANG Wei  YI Guo-xing  ZENG Qing-shuang
Affiliation:School of Astronautics, Harbin Inst. of Technology, Harbin 150001, China
Abstract:To overcome the drawback of high computational burden and poor real-time capability in target tracking problems using particle filter with a large number of particles, an improved real-time particle filter (RTPF) algorithm is proposed which is based on data fusion with support vector machines (SVM). The SVM RTPF employs the estimation window RTPF as basic framework and uses the SVM for fusing the particles at different time in the window, so the target is tracked quickly by the particles and their updated importance weights according to the fused results. Compared with the RTPF algorithm based on minimizing the Kullback-Leibler distance to adjust mixing weights in the window, the new algorithm is simple and more suitable to the range of real-time applications. The bearings-only tracking simulation results demonstrate the feasibility and superiority of the novel algorithm.
Keywords:target tracking  support vector machines  real-time particle filter  data fusion
本文献已被 万方数据 等数据库收录!
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号