首页 | 本学科首页   官方微博 | 高级检索  
     

基于LCT域模糊函数的QFM信号参数估计算法性能分析
引用本文:宋玉娥,陶然,时鹏飞,卜红霞. 基于LCT域模糊函数的QFM信号参数估计算法性能分析[J]. 北京理工大学学报, 2014, 34(9): 940-943,949
作者姓名:宋玉娥  陶然  时鹏飞  卜红霞
作者单位:北京理工大学信息与电子学院,北京100081;北京工业职业技术学院信息工程系,北京100042;北京理工大学信息与电子学院,北京100081;北京理工大学信息与电子学院,北京100081;河北师范大学物理科学与信息工程学院,河北,石家庄050016
基金项目:长江学者和创新团队发展计划(IRT1005)
摘    要:基于线性正则域模糊函数的二次调频信号参数估计算法,探讨了噪声环境下算法的可行性,通过仿真实验分析了算法的信噪比门限,并进一步讨论了算法的优势. 为进一步提高信号的估计精度,提出了乘积性线性正则变换(LCT)域模糊函数来估计二次调频(QFM)信号. 理论分析和仿真实验表明,该算法在低信噪比时也具有良好的估计性能,且随着信噪比的增加,各参数的均方误差越来越接近其Cramer-Rao下界;该算法能一次性估计3个参数,效率高,误差传递小. 

关 键 词:线性正则变换  模糊函数  二次调频信号  信噪比  参数估计
收稿时间:2012-12-30

Performance Analysis of Parameter Estimation Algorithm for QFM Signals Using Ambiguity Function in the Linear Canonical Transform Domain
SONG Yu-e,TAO Ran,SHI Peng-fei and BU Hong-xia. Performance Analysis of Parameter Estimation Algorithm for QFM Signals Using Ambiguity Function in the Linear Canonical Transform Domain[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2014, 34(9): 940-943,949
Authors:SONG Yu-e  TAO Ran  SHI Peng-fei  BU Hong-xia
Affiliation:1.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;Department of Information Engineering, Beijing Polytechnic College, Beijing 100042, China2.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China3.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang, Hebei 050016, China
Abstract:In order to derive the performance of the ambiguity function in the linear canonical transform (LCT) domain algorithm for parameters estimation of quadratic modulated frequency (QFM) signal, the feasibility of the algorithm in noisy environment was discussed at first and the signal to noise radio (SNR) threshold was analyzed by simulation experiments. The advantages of the algorithm were given out as well. The product ambiguity function in the LCT domain was proposed in order to further improve the estimation precision of the QFM signal. Theory analysis and simulation experiments show that the algorithm has good estimation performance in low SNR. And the mean square error (MSE) of each parameter is more and more close to its Cramer-Rao lower bound with the increase of the SNR. The algorithm can estimate three parameters at one time, so it has high efficiency and small error transmission.
Keywords:linear canonical transform  ambiguity function  quadratic frequency modulated signal  signal to noise ratio  parameter estimation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号