首页 | 本学科首页   官方微博 | 高级检索  
     

基于熵评价模态分解的雷达信号双谱特征识别
引用本文:米新平,陈西宏,刘赞,刘永进,刘强. 基于熵评价模态分解的雷达信号双谱特征识别[J]. 系统工程与电子技术, 2021, 43(8): 2116-2123. DOI: 10.12305/j.issn.1001-506X.2021.08.12
作者姓名:米新平  陈西宏  刘赞  刘永进  刘强
作者单位:空军工程大学防空反导学院, 陕西 西安 710051
基金项目:国家自然科学基金资助课题(61701525)
摘    要:
针对在低信噪比下雷达信号调制识别准确率低、抗噪性差的问题,提出一种基于熵评价模态分解和双谱特征提取的识别方法.利用双谱可以抑制高斯噪声的特点,分析了在低信噪比下进行信号调制识别的可行性并引入了噪声项.由于噪声项的干扰,双谱在0 dB以下时,噪声抑制效果变差,提出了基于信息熵评价的经验模态化分解对信号进行预处理,提高信噪...

关 键 词:双谱  信息熵  卷积神经网络  经验模态化分解
收稿时间:2020-07-01

Bispectrum feature recognition of radar signal based on entropy evaluation and modal decomposition
Xinping MI,Xihong CHEN,Zan LIU,Yongjin LIU,Qiang LIU. Bispectrum feature recognition of radar signal based on entropy evaluation and modal decomposition[J]. System Engineering and Electronics, 2021, 43(8): 2116-2123. DOI: 10.12305/j.issn.1001-506X.2021.08.12
Authors:Xinping MI  Xihong CHEN  Zan LIU  Yongjin LIU  Qiang LIU
Affiliation:Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China
Abstract:
In order to solve the problems of low accuracy and poor anti-noise of radar signal modulation recognition under low signal to noise ratio (SNR), a recognition method based on entropy evaluation modal decomposition and bispectrum feature extraction is proposed. Based on the characteristics of bispectrum which can suppress Gaussian noise, the feasibility of signal modulation recognition in low SNR is analyzed and the noise term is introduced. Due to the interference of noise term, the noise suppression effect of bispectrum below 0 dB becomes worse. An empirical modal decomposition based on information entropy evaluation is proposed to preprocess the signal and improve the SNR. Finally, a convolutional neural network classifier is designed to recognize different modulation signals. Simulation experiment results show that this method has better anti-noise performance than the traditional method, and can effectively identify different types of signals in low SNR.
Keywords:bispectrum  information entropy  convolutional neural network  empirical modal decomposition  
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号