首页 | 本学科首页   官方微博 | 高级检索  
     

基于社会计算和机器学习的垃圾邮件识别方法的研究
引用本文:董源,徐雅斌,李卓,李艳平. 基于社会计算和机器学习的垃圾邮件识别方法的研究[J]. 山东大学学报(理学版), 2013, 48(7): 72-78
作者姓名:董源  徐雅斌  李卓  李艳平
作者单位:1.北京信息科技大学计算机学院, 北京 100101;
2.北京信息科技大学网络文化与数字传播北京市重点实验室, 北京 100101
基金项目:国家自然科学基金资助项目(60973107);网络文化与数字传播北京市重点实验室资助项目(ICDD201106);国家社会科学基金重大项目(12&ZD234);网络文化与数字传播北京市重点实验室开放课题
摘    要:在对目前各种垃圾邮件识别方法进行研究分析的基础上,结合社会计算的理论和机器学习的方法,提出了一种新的垃圾邮件识别方法。通过利用邮件头部中能反映联系人社会关系的特征来构造一张联系人来往关系图对垃圾邮件进行初次识别,对于无法确定存在社会关系的联系人的邮件再利用机器学习的方法进行识别。实验结果表明,采用该方法进行垃圾邮件识别较之单纯采用贝叶斯方法,识别准确率有了较大的提高,同时,识别时间得到降低。

关 键 词:社会计算  垃圾邮件识别  社会关系  机器学习,
收稿时间:2013-06-17

Research on spam identification based on social computing and machine learning
DONG Yuan , XU Ya-bin , LI Zhuo , LI Yan-ping. Research on spam identification based on social computing and machine learning[J]. Journal of Shandong University, 2013, 48(7): 72-78
Authors:DONG Yuan    XU Ya-bin    LI Zhuo    LI Yan-ping
Affiliation:1. School of Computer, Beijing Information Science &Technology University, Beijing 100101, China;
2. Beijing Key Laboratory of Internet Culture and Digital Dissemination Research,
Beijing Information Science &Technology University, Beijing 100101, China
Abstract:Based on the investigation and analysis of the current various spam recognition methods, a new spam identification method is proposed inspiring by social computing theory and methods of machine learning. Firstly, initial recognition of spams is taken using a relationship map of the interactions among contacts, which is constructed with the help of the characteristics in the mail heads reflecting the social relation of contacts. After that, for the mails of the contacts which are not able to be identified having social relation, recognition methods based on machine learning are taken. Through the experiments, it is demonstrated that the proposed method can identify spams more accurately while taking a shorter time, comparing with the ones based on Na-ve Bayes.
Keywords:social computing  spam identification  social relations  machine learning
本文献已被 万方数据 等数据库收录!
点击此处可从《山东大学学报(理学版)》浏览原始摘要信息
点击此处可从《山东大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号