首页 | 本学科首页   官方微博 | 高级检索  
     

基于灰关联分析和时空偏好特征的兴趣点推荐算法
引用本文:陈江美,张文德. 基于灰关联分析和时空偏好特征的兴趣点推荐算法[J]. 系统工程与电子技术, 2022, 44(6): 1934-1941. DOI: 10.12305/j.issn.1001-506X.2022.06.20
作者姓名:陈江美  张文德
作者单位:1. 福州大学经济与管理学院, 福建 福州 3501082. 福州大学信息管理研究所, 福建 福州 350108
基金项目:中国高校产学研创新基金新一代信息技术创新(2019ITA0103)
摘    要:为了提高动态推荐效果,从时间个性化和连续性的角度出发,细化了签到用户的时间特征,利用灰关联分析度量时间向量的相似度,与矩阵分解算法结合,给出了一种新的矩阵分解算法。该算法可缓解时间戳细化签到矩阵后带来的数据稀疏的影响。同时为了提高个性化推荐,采用自适应核密度估计方法捕捉用户的空间偏好,增强用户的个性化体验,进而提高推荐质量。在此基础上,设计了一种新的兴趣点推荐算法。实验结果表明,该算法能有效地提高推荐准确率和召回率。

关 键 词:兴趣点推荐  灰关联分析  矩阵分解  自适应核密度估计
收稿时间:2021-02-25

Point-of-interest recommendation algorithm based on grey relational analysis and temporal-spatial preference feature
Jiangmei CHEN,Wende ZHANG. Point-of-interest recommendation algorithm based on grey relational analysis and temporal-spatial preference feature[J]. System Engineering and Electronics, 2022, 44(6): 1934-1941. DOI: 10.12305/j.issn.1001-506X.2022.06.20
Authors:Jiangmei CHEN  Wende ZHANG
Affiliation:1. School of Economics & Management, Fuzhou University, Fuzhou 350108, China2. Institute of Information Management, Fuzhou University, Fuzhou 350108, China
Abstract:To improve the effect of dynamic recommendation, the time characteristics from the perspective of temporal non-uniformness and consecutiveness is refined. The similarity of time vectors is measured using grey relational analysis (GRA) and incorporated with the matrix factorization algorithm. A new matrix decomposition algorithm is proposed, which can alleviate the data sparsity caused by dividing the check-in matrix with time slots. To achieve personalized recommendation, the adaptive kernel density estimation is leveraged to capture the personalized spatial preference, and thus enhance the recommendation quality. On this basis, a novel point-of-interest (POI) recommendation algorithm is designed. Experiment results show the proposed algorithm can effectively improve the precision and recall.
Keywords:point-of-interest (POI) recommendation  grey relational analysis (GRA)  matrix factorization  adaptive kernel density estimation  
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号