首页 | 本学科首页   官方微博 | 高级检索  
     

保持纹理细节的自适应非局部均值图像降噪
引用本文:陈刚,钱振兴,王朔中. 保持纹理细节的自适应非局部均值图像降噪[J]. 上海大学学报(自然科学版), 2014, 20(1): 99-106. DOI: 10.3969/j.issn.1007-2861.2013.07.023
作者姓名:陈刚  钱振兴  王朔中
作者单位:上海大学 通信与信息工程学院, 上海 200444
基金项目:国家自然科学基金资助项目(61071187, 61103181); 上海市教委创新基金资助项目(11YZ10)
摘    要:主邻域字典(principal neighborhood dictionaries, PND)非局部均值(nonlocal means, NLM)是一种基于主成分分析(principal component analysis , PCA)的有效图像降噪方法, 但因其未能充分利用图像的内容结构信息, 对纹理细节较多区域的降噪效果较差. 改进PND 方法, 实现基于PCA 的自适应非局部均值降噪. 根据图像局部内容调整滤波参数h, 得到动态变化的像素间相似权值. 实验结果表明, 该方法能更好地保留图像纹理和边缘信息, 降噪效果优于非自适应的PND 方法.

关 键 词:非局部均值降噪  滤波参数  主成分分析  主邻域字典  
收稿时间:2013-02-06

Adaptive Nonlocal Means Image Denoising for Better Preservation of Textures
CHEN Gang,QIAN Zhen-xing,WANG Shuo-zhong. Adaptive Nonlocal Means Image Denoising for Better Preservation of Textures[J]. Journal of Shanghai University(Natural Science), 2014, 20(1): 99-106. DOI: 10.3969/j.issn.1007-2861.2013.07.023
Authors:CHEN Gang  QIAN Zhen-xing  WANG Shuo-zhong
Affiliation:School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
Abstract:The principal neighborhood dictionaries (PND) nonlocal means (NLM) is an effective method for image denoising, which is based on principal component analysis(PCA). However, it does not make full use of the image contents and is less effective in texture regions. This paper proposes modification to the PND method by adjusting a filter parameter h to achieve better accuracy. Experimental results show that the proposed outperforms PND method and can preserve more edge and texture details while achieving satisfactory denoising results.
Keywords:filter parameter  nonlocal means (NLM) denoising  principal component analysis(PCA)  principal neighborhood dictionaries (PND)  
本文献已被 CNKI 等数据库收录!
点击此处可从《上海大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《上海大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号