首页 | 本学科首页   官方微博 | 高级检索  
     

基于LSTM分类器的航空发动机预测性维护模型
引用本文:蔺瑞管,王华伟,车畅畅,倪晓梅,熊明兰. 基于LSTM分类器的航空发动机预测性维护模型[J]. 系统工程与电子技术, 2022, 44(3): 1052-1059. DOI: 10.12305/j.issn.1001-506X.2022.03.39
作者姓名:蔺瑞管  王华伟  车畅畅  倪晓梅  熊明兰
作者单位:南京航空航天大学民航学院, 江苏 南京 210016
基金项目:国家自然科学基金(U1833110)资助课题。
摘    要:
利用传感器数据进行预测性维护是航空发动机故障预测与健康管理(prognostic and health manage-ment,PHM)的关键问题.针对发动机剩余寿命预测准确性低的问题,提出基于长短期记忆网络(long short-term memory network,LSTM)分类器的预测性维护模型.LSTM分类器...

关 键 词:故障预测与健康管理  预测性维护  长短期记忆网络  时间窗  二分类
收稿时间:2021-02-17

Predictive maintenance model of aeroengine based on LSTM classifier
LIN Ruiguan,WANG Huawei,CHE Changchang,NI Xiaomei,XIONG Minglan. Predictive maintenance model of aeroengine based on LSTM classifier[J]. System Engineering and Electronics, 2022, 44(3): 1052-1059. DOI: 10.12305/j.issn.1001-506X.2022.03.39
Authors:LIN Ruiguan  WANG Huawei  CHE Changchang  NI Xiaomei  XIONG Minglan
Affiliation:School of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:
Predictive maintenance using sensor data is a key issue in aeroengine prognostic and health management(PHM). Aiming at the problem of low accuracy of remaining useful life prediction of aeroengine, a predictive maintenance model based on long short-term memory network(LSTM) classifier is proposed. The LSTM classifier fully screens the long time sequence information through the gating unit, and uses the effective information for time sequence prediction. Firstly, a sliding time window is used to prepare training samples. Secondly, the pre-processed samples are input into the LSTM to predict the failure probability of the equipment in a specific time window. Then, by adjusting the window size, a two-class model with the best performance is obtained to better adapt to predictive maintenance requirements. Finally, the National Aeronautics and Space Administration C-MAPSS data set is used to verify the effectiveness of the model. Compared with the existing classification methods, the proposed model is more accurate in rumaining useful life classification.
Keywords:prognostic and health management(PHM)  predictive maintenance  long short-term memory network(LSTM)  time window  binary classification
本文献已被 维普 等数据库收录!
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号