首页 | 本学科首页   官方微博 | 高级检索  
     

基于LSTM神经网络的短期轨道预报
引用本文:张心宇,刘源,宋佳凝. 基于LSTM神经网络的短期轨道预报[J]. 系统工程与电子技术, 2022, 44(3): 939-947. DOI: 10.12305/j.issn.1001-506X.2022.03.26
作者姓名:张心宇  刘源  宋佳凝
作者单位:1. 中山大学天琴中心, 广东 珠海 5190822. 中山大学物理与天文学院, 广东 珠海 519082
基金项目:中山大学中央高校基本科研业务费专项资金(19lgpy280)资助课题。
摘    要:针对基于动力学模型的轨道预报方法对卫星自主轨道预报与大量非合作目标轨道预报中存在建模成本过高和缺少目标空间环境信息的问题,提出一种基于误差数据驱动的神经网络轨道预报方法.该方法在解析法动力学模型的基础上,使用长短期记忆神经网络对历史轨道预报的误差进行学习,预测未来短期动力学模型的预报误差,以此对预报结果进行修正.选用A...

关 键 词:卫星轨道预报  机器学习  长短期记忆神经网络  时间序列分析
收稿时间:2020-12-01

Short-term orbit prediction based on LSTM neural network
ZHANG Xinyu,LIU Yuan,SONG Jianing. Short-term orbit prediction based on LSTM neural network[J]. System Engineering and Electronics, 2022, 44(3): 939-947. DOI: 10.12305/j.issn.1001-506X.2022.03.26
Authors:ZHANG Xinyu  LIU Yuan  SONG Jianing
Affiliation:1. TianQin Research Center for Gravitational Physics, SunYat-sen University, Zhuhai 519082, China2. School of Physics and Astronomy, SunYat-sen University, Zhuhai 519082, China
Abstract:Aiming at the problems of high modeling cost and lack of target space environment information in satellite autonomous orbit prediction and a large number of non cooperative target orbit prediction based on dynamic model, a neural network orbit prediction method driven by error data is proposed. Based on the analytical dynamic model, this method uses the long short-term memory neural network to learn the error of historical orbit prediction and predict the prediction error of future short-term dynamic model, so as to correct the prediction results. The ajisai satellite orbit data and SGP4(simplified general pertubations) dynamic model are selected to verify the effectiveness and performance of the proposed model. The experimental results show that the one-day prediction errors of the three axes in the geocentric inertial coordinate system are reduced to 16.87%, 17.66% and 19.58% respectively, which significantly improves the orbit prediction accuracy.
Keywords:satellite orbit forecast  machine learning  long short-term memory(LSTM)neural network  time series analysis
本文献已被 维普 等数据库收录!
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号