首页 | 本学科首页   官方微博 | 高级检索  
     

基于多尺度学习的电介质目标定位与重构
引用本文:陈佳琳,杨春夏. 基于多尺度学习的电介质目标定位与重构[J]. 上海师范大学学报(自然科学版), 2024, 53(2): 273-277
作者姓名:陈佳琳  杨春夏
作者单位:上海师范大学 信息与机电工程学院, 上海 201418
基金项目:国家自然科学基金(61801293)
摘    要:利用神经网络将电磁逆散射问题与多尺度方法相结合,通过将散射场的场强数值输入多尺度融合模型中进行不断训练,实现目标的定位与重构. 对于目标区域内的手写数字散射体,首先利用Lenet网络模型定位目标散射体所在的区域;然后将散射体所在的区域进一步通过SmaAt-UNet神经网络学习,训练重构散射体的形状,进而确定该数字,不同的模型负责提取不同的特征;最后将特征融合在一起,以增强最终结果的表征能力.

关 键 词:电磁逆散射  多尺度  深度学习  Lenet  SmaAt-UNet
收稿时间:2023-12-23

Dielectric target localization and reconstruction based on multi-scale learning
CHEN Jialin,YANG Chunxia. Dielectric target localization and reconstruction based on multi-scale learning[J]. Journal of Shanghai Normal University(Natural Sciences), 2024, 53(2): 273-277
Authors:CHEN Jialin  YANG Chunxia
Affiliation:College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201418, China
Abstract:The electromagnetic inverse scattering problem was combined with multi-scale method by using neural network in this paper. The target location and reconstruction were realized by inputting the field strength value of scattering field into multi-scale fusion model for continuous training. Firstly, for the handwritten digital scatterer in the target area, the Lenet network model was adopted to locate the area where the target scatterer was. Secondly, the area where the scatterer located was further learned by SmaAt-UNet neural network, and the shape of the reconstructed scatterer was trained to determine the number. Different models were responsible for extracting different features respectively. Finally, these features were integrated to enhance the characterization ability of the final result.
Keywords:electromagnetic inverse scattering  multiscale  deep learning  Lenet  SmaAt-UNet
点击此处可从《上海师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《上海师范大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号