首页 | 本学科首页   官方微博 | 高级检索  
     

基于Word2Vec和决策树的故障定位技术
引用本文:王露露,陈军华. 基于Word2Vec和决策树的故障定位技术[J]. 上海师范大学学报(自然科学版), 2024, 53(2): 223-227
作者姓名:王露露  陈军华
作者单位:上海师范大学 信息与机电工程学院, 上海 201418
摘    要:利用Word2Vec方法对Java源代码进行深层语义编码,生成文件级和行级的语义向量,并将其用作输入数据来训练决策树模型,以实现精确的文件级别和行级别故障定位,优化故障检测过程,构建一个综合文件级别与行级别分析的高效故障定位框架. 实验结果表明:该模型在各项目中的故障定位准确率均高于83%.

关 键 词:故障定位  语义表示  Word2Vec  决策树
收稿时间:2023-12-25

Fault location technology based on Word2Vec and decision tree
WANG Lulu,CHEN Junhua. Fault location technology based on Word2Vec and decision tree[J]. Journal of Shanghai Normal University(Natural Sciences), 2024, 53(2): 223-227
Authors:WANG Lulu  CHEN Junhua
Affiliation:College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201418, China
Abstract:Word2Vec technology was utilized to perform deep semantic encoding on Java source code, generating file-level and line-level semantic vectors. These vectors were used as input data to train the decision tree model, aiming to achieve precise file-level and line-level fault location and to optimize the fault detection process. An efficient fault localization framework was constructed by this method which integrated file-level and line-level analysis. The experimental results showed that the fault localization accuracy of the model in all projects was higher than 83%.
Keywords:fault location  semantic representation  Word2Vec  decision tree
点击此处可从《上海师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《上海师范大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号