首页 | 本学科首页   官方微博 | 高级检索  
     

基于二分网络社团划分的推荐算法
作者姓名:陈东明  严燕斌  黄新宇  王冬琦
作者单位:(东北大学 软件学院, 辽宁 沈阳110169)
基金项目:辽宁省自然科学基金资助项目(20170540320); 辽宁省教育厅科学研究项目(L20150167).国家自然科学基金资助项目(51171041).
摘    要:传统的基于用户的协同过滤(User-based CF)推荐算法的推荐效率随着数据的不断增加而降低.本文在User-based CF算法中引入二分网络社团发现理论,提出一种基于二分网络社团划分的推荐算法(RACD).首先通过用户与项目之间的关系建立用户-项目二分网络,然后通过RACD对该网络进行社团划分,得到用户的社团信息,最后通过同一社团中的其他用户对目标用户进行项目的推荐.在经典网络数据集上的实验结果表明,RACD能够有效提高推荐系统实时推荐效率.

关 键 词:推荐算法  二分网络  社团划分  协同过滤  复杂网络  
本文献已被 CNKI 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号