首页 | 本学科首页   官方微博 | 高级检索  
     检索      

小野下光子特征线混合笔束模型肺部剂量算法
引用本文:崔凤洁,王宁宇,顾少娴,杨鹏,尹楚欧,张盛元,胡金有,蔡芸竹,吴章文,汪俊,勾成俊.小野下光子特征线混合笔束模型肺部剂量算法[J].四川大学学报(自然科学版),2022,59(4):044001-101.
作者姓名:崔凤洁  王宁宇  顾少娴  杨鹏  尹楚欧  张盛元  胡金有  蔡芸竹  吴章文  汪俊  勾成俊
作者单位:四川大学原子核科学技术研究所射物理及技术教育部重点实验室,四川大学原子核科学技术研究所射物理及技术教育部重点实验室,四川大学原子核科学技术研究所射物理及技术教育部重点实验室,四川大学原子核科学技术研究所射物理及技术教育部重点实验室,四川大学原子核科学技术研究所射物理及技术教育部重点实验室,四川大学原子核科学技术研究所射物理及技术教育部重点实验室,四川大学原子核科学技术研究所射物理及技术教育部重点实验室,四川大学原子核科学技术研究所射物理及技术教育部重点实验室,四川大学原子核科学技术研究所射物理及技术教育部重点实验室,四川大学原子核科学技术研究所射物理及技术教育部重点实验室,四川大学原子核科学技术研究所射物理及技术教育部重点实验室
基金项目:国家重点研发计划(2016YFC0105103)
摘    要:为了准确计算小射野下肺模体中精确的三维剂量分布,本文提出了光子特征线混合笔束模型.该模型首先采用光子特征线算法获得参考射野下肺模体的中心轴深度剂量,然后在此基础上对肺模体笔束核进行等效深度修正和加权密度修正.本文利用该算法计算了6 MV光子束在不同射野下不同肺模体的中心轴深度剂量分布,并与蒙特卡罗模拟结果相比较以验证其精度.结果表明,两种方法计算得到的剂量基本一致,大多数深度处的相对误差小于3%.主要差异表现在介质交界处及肺组织前部,其相对误差随着射野尺寸和肺密度的增大而减小,最大相对误差范围为7.8%~36.9%.在肺组织前部,相对误差大于3%的深度范围随射野尺寸的增大和肺密度的减小而增大.因此,该算法在小射野下的肺部剂量计算中具有潜在的研究价值.

关 键 词:小射野  肺模体  光子特征线混合笔束模型  等效深度修正  加权密度修正
收稿时间:2022/1/3 0:00:00
修稿时间:2022/2/23 0:00:00

Photon characteristic line hybrid pencil beam model for lung phantoms under condition of small fields
CUI Feng-Jie,WANG Ning-Yu,GU Shao-Xian,YANG Peng,YIN Chu-Ou,ZHANG Sheng-Yuan,HU Jin-You,CAI Yun-Zhu,WU Zhang-Wen,WANG Jun and GOU Cheng-Jun.Photon characteristic line hybrid pencil beam model for lung phantoms under condition of small fields[J].Journal of Sichuan University (Natural Science Edition),2022,59(4):044001-101.
Authors:CUI Feng-Jie  WANG Ning-Yu  GU Shao-Xian  YANG Peng  YIN Chu-Ou  ZHANG Sheng-Yuan  HU Jin-You  CAI Yun-Zhu  WU Zhang-Wen  WANG Jun and GOU Cheng-Jun
Institution:Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University,Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University,Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University,Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University,Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University,Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University,Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University,Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University,Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University,Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University,Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University
Abstract:In order to accurately calculate the three-dimensional dose distribution in a lung phantom photon under a small fied, photon characteristic line hybrid pencil beam model has been proposed. The model is based on the photon characteristic line algorithm to obtain the depth dose for lung phantoms in the reference field. On this basis, the pencil beam kernel of lung phantom is processed by heterogeneous correction, including equivalent depth correction and weighted density correction. Finally, the pencil beam kernel for lung phantom is calculated for obtaining the dose at each point on the central axis for the 6 MV photon beam. The results show that the central axis percentage depth dose obtained by this algorithm is basically consistent with the Monte Carlo simulation results, and the relative error is less than 3% in most cases. Especially in the middle and posterior portion of lung, the average relative error is less than 1%. However, the dose difference between the two methods is obvious at media interfaces and lung anterior portion, and the relative errors decrease with the increase of field size and lung density, with the maximum relative error ranging from 7.8% to 36.9%. Nevertheless, the model can accurately describe the dose distribution in small fields for lung radiotherapy.
Keywords:Small fields  Lung phantoms  Photon characteristic line hybrid pencil beam model  Equivalent depth correction  Weighted density correction
点击此处可从《四川大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号