首页 | 本学科首页   官方微博 | 高级检索  
     

混合变量多目标优化设计的Pareto遗传算法实现
作者姓名:朱学军  攀登  王安麟  张惠侨  叶庆泰
作者单位:上海交通大学,机械工程学院,上海,200030;上海交通大学,机械工程学院,上海,200030;上海交通大学,机械工程学院,上海,200030;上海交通大学,机械工程学院,上海,200030;上海交通大学,机械工程学院,上海,200030
摘    要:提出了一种用Pareto遗传算法来实施的带约束的多目标混合变量的优化方法。得到Pareto最优解集,决策者从中可选出满足设计需要的解。该算法包括6个基本算子:选择、变异、交叉、离散变量圆整算子、小生境、Pareto集合过滤器。建立了用于多目标优化的适应度函数,使用模糊罚函数法法将带约束的多目标优化问题转换为无约束优化问题,同时提出了处理混合变量多目标优化问题中离散变量的方法。最后用算例说明了该方法

关 键 词:多目标优化  混合变量  Pareto最优  遗传算法  模糊罚函数
修稿时间:1999-01-04
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号