首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular dynamics simulations of non-Fourier heat conduction
Authors:Qixin Liu  Peixue Jiang  Heng Xiang
Institution:Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
Abstract:Unsteady heat conduction is known to deviate significantly from Fourier's law when the system time and length scales are within certain temporal and spatial windows of relaxation. Classical molecular dynamics simulations were used to investigate unsteady heat conduction in argon thin films with a sudden temperature increase or heat flux at one surface to study the non-Fourier heat conduction effects in argon thin films. The studies were conducted with both pure argon films and films with vacancy defects. The temperature pro- files in the argon films showed the existence of mechanical waves when the thin film was suddenly heated and the wave nature of the heat propagation. The flux phase relaxation time, τq, and the temperature phase relaxation time, τq were calculated from the temporal vari- ations of the energy flux and temperature distribution in the film. Comparisons of the MD temperature profiles with temperature profiles predicted by Fourier's law show that Fourier's law is not able to predict the temperature variations with time. Different film thicknesses were also studied to illustrate the variation of the time needed for the films to reach steady-state temperature profiles after a sudden tem- perature rise at one surface and to illustrate the finite speed of the energy waves.
Keywords:Molecular dynamics simulation  Non-Fourier heat conduction  Argon thin film
本文献已被 维普 万方数据 ScienceDirect 等数据库收录!
点击此处可从《自然科学进展(英文版)》浏览原始摘要信息
点击此处可从《自然科学进展(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号