首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Electric transmission behavior of self-assembled Cu–W nano multilayers
摘    要:Metallic nano multilayers were usually prepared by dual targets alternating deposition method. In this paper, a series of self-assembled Cu–W nano multilayers with different modulation periods were deposited on single crystal silicon substrate by dual targets confocal magnetron sputtering technique. The self-assembled film presented an alternation of W-rich layer and Cu-rich layer. The degree of coherence of the layered interface can be adjusted by controlling both the solid solubility of W-rich and Cu-rich layers. The film resistance increment of the self-assembled Cu–W multilayers is only 14% when the modulation period decreases from 68.2 nm to 5.3 nm,having less size effect compared to the film prepared by alternating deposition method. It noticed that the film resistance even decreased slightly when the modulation period decreased to below 5.3 nm. These results suggested that the coherence could weak the interface scattering ability to electrons, so the self-assembled Cu–W multilayers have lower resistance than the multilayer prepared by alternating deposition technique. This study presented a new pathway to enhance the conductivity of the multilayers.

收稿时间:26 February 2020
本文献已被 CNKI ScienceDirect 等数据库收录!
点击此处可从《自然科学进展(英文版)》浏览原始摘要信息
点击此处可从《自然科学进展(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号