首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of the withdrawal rate on the microstructure and thermal durability of a third-generation single crystal superalloy
Authors:Yunsong Zhao  Mai Zhang  Luyan Yang  Yuanyuan Guo  Jian Zhang  Hui Lu  Yanhui Chen  Dingzhong Tang
Institution:1. Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing, 100095, China;2. Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124, China
Abstract:Single crystal Ni-based superalloys are the typical structural materials for high-pressure turbine blades, and their microstructure is critical in determining their mechanical properties. The withdrawal rate is a key parameter affecting the microstructure during the single crystal growth process. In the present work the effect of the withdrawal rate on the microstructure of a third-generation single crystal superalloy containing 6.8 ?wt% Re has been investigated, and the creep resistance of the alloy determined. The results showed that increased withdrawal rate refined the dendritic structure, reduced dendritic arm spacing, promoted the growth of secondary tertiary dendrites and decreased solidification segregation with a reduced size of γ′ phase. The porosity density of the as-cast alloy first decreased and then increased with the withdrawal rate, while the minimum porosity densityoccurred when the alloy was under the solidification condition of withdrawal rate of 4.5 ?mm/min. The maximum creep rupture life of 326.4 ?h of the heat-treated alloys under the test condition of 1100 ?°C/140 ?MPa also appeared at the alloys under the withdrawal rates of 4.5 ?mm/min. It is believed that the minimum porosity density and reduced size of the γ′ phase may be the main reasons for the enhanced creep rupture life of the alloys with withdrawal rates of 4.5 ?mm/min. This investigation provides theoretical support and a practical basis for the development of third-generation single crystal superalloys.
Keywords:Nickel-based superalloy  Withdrawal rate  Microstructure  Thermal durability
本文献已被 ScienceDirect 等数据库收录!
点击此处可从《自然科学进展(英文版)》浏览原始摘要信息
点击此处可从《自然科学进展(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号