首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Internal motions of a quasiparticle governing its ultrafast nonlinear response
Authors:Gaal P  Kuehn W  Reimann K  Woerner M  Elsaesser T  Hey R
Institution:Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany.
Abstract:A charged particle modifies the structure of the surrounding medium: examples include a proton in ice, an ion in a DNA molecule, an electron at an interface, or an electron in an organic or inorganic crystal. In turn, the medium acts back on the particle. In a polar or ionic solid, a free electron distorts the crystal lattice, displacing the atoms from their equilibrium positions. The electron, when considered together with its surrounding lattice distortion, is a single quasiparticle, known as the Fr?hlich polaron. The basic properties of polarons and their drift motion in a weak electric field are well known. However, their nonlinear high-field properties--relevant for transport on nanometre length and ultrashort timescales--are not understood. Here we show that a high electric field in the terahertz range drives the polaron in a GaAs crystal into a highly nonlinear regime where, in addition to the drift motion, the electron is impulsively moved away from the centre of the surrounding lattice distortion. In this way, coherent lattice vibrations (phonons) and concomitant drift velocity oscillations are induced that persist for several hundred femtoseconds. They modulate the optical response at infrared frequencies between absorption and stimulated emission. Such quantum coherent processes directly affect high-frequency transport in nanostructures and may be exploited in novel terahertz-driven optical modulators and switches.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号