首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermal radiation scanning tunnelling microscopy
Authors:De Wilde Yannick  Formanek Florian  Carminati Rémi  Gralak Boris  Lemoine Paul-Arthur  Joulain Karl  Mulet Jean-Philippe  Chen Yong  Greffet Jean-Jacques
Institution:Laboratoire d'Optique Physique, Ecole Supérieure de Physique et de Chimie Industrielles, CNRS-UPR A0005, 10 rue Vauquelin, 75005 Paris, France. dewilde@optique.espci.fr
Abstract:In standard near-field scanning optical microscopy (NSOM), a subwavelength probe acts as an optical 'stethoscope' to map the near field produced at the sample surface by external illumination. This technique has been applied using visible, infrared, terahertz and gigahertz radiation to illuminate the sample, providing a resolution well beyond the diffraction limit. NSOM is well suited to study surface waves such as surface plasmons or surface-phonon polaritons. Using an aperture NSOM with visible laser illumination, a near-field interference pattern around a corral structure has been observed, whose features were similar to the scanning tunnelling microscope image of the electronic waves in a quantum corral. Here we describe an infrared NSOM that operates without any external illumination: it is a near-field analogue of a night-vision camera, making use of the thermal infrared evanescent fields emitted by the surface, and behaves as an optical scanning tunnelling microscope. We therefore term this instrument a 'thermal radiation scanning tunnelling microscope' (TRSTM). We show the first TRSTM images of thermally excited surface plasmons, and demonstrate spatial coherence effects in near-field thermal emission.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号