首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enhanced Adsorption of Methyl Orange onto Self-assembled Hydrogel with Anatase Titania Nanotube and Graphene
Abstract:A novel composites hydrogel adsorbent was facilely synthesized for efficient removal of acid dyes from aqueous solution.The composite hydrogel consisting of TiO_2 nanotubes(TN) and graphene oxide(GO)(H-TN-GO) was characterized by BrunauerEmmett-Teller(BET),transmission electron microscope(TEM),scanning electron microscope(SEM),Raman spectra and X-ray photoelectron spectroscope(XPS).Experimental results elucidated that columnar hydrogel could be tunably prepared with self-assembly by adjusting the proportion of GO/TN,mixing time and pH.The properties of adsorption and regeneration on methyl orange(MO)onto H-TN-GO were investigated respectively.The maximal adsorption capacity of H-TN-GO for MO reached 933.8 and 513.7mg/g under the pH of 4.0 and 6.8,respectively.The adsorption capacity of MO reached the maximum when pH was equivalent to4.0,which attributed to increasing electrostatic attraction.Besides,the adsorption behavior was fitted reasonably better with Freundlich isotherm model than Langmuir model;the adsorption speed was rapid and the removal ratio almost reached 99.5% when the concentration of MO was less than 100 mg/L.After the used adsorbent was irradiated with the ultraviolet ray of 500 W for 3 h,its adsorption capacity could be recovered without significant loss.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号