首页 | 本学科首页   官方微博 | 高级检索  
     检索      

综放工作面回采巷道围岩变形阶段确定方法
引用本文:秦洪岩,欧阳振华,赵希栋,张峰,陈明元.综放工作面回采巷道围岩变形阶段确定方法[J].重庆大学学报(自然科学版),2019,42(12):50-59.
作者姓名:秦洪岩  欧阳振华  赵希栋  张峰  陈明元
作者单位:华北科技学院 安全工程学院,北京 101601;河北省矿井灾害防治重点实验室 河北 廊坊 065201;辽宁工程技术大学 矿山热动力灾害与防治教育部重点实验室,辽宁 阜新 123000;华北科技学院 安全工程学院,北京 101601;河北省矿井灾害防治重点实验室 河北 廊坊 065201;辽宁工程技术大学 矿山热动力灾害与防治教育部重点实验室,辽宁 阜新 123000;中国矿业大学 煤炭资源与安全开采国家重点实验室,江苏 徐州 221116;辽宁工程技术大学 矿山热动力灾害与防治教育部重点实验室,辽宁 阜新 123000;越南煤炭集团工业及煤矿投资咨询股份公司 越南 北江 21000
基金项目:国家自然科学基金资助项目(51274117,51704148);"十三五"国家重大研发计划项目(2017YFC0804108);中央高校基本科研业务费资助(3142018024,3142017096);廊坊市科学技术研究与发展计划项目(2018013105)
摘    要:为分析综放工作面前方巷道变形特征,以河林煤矿j7401综放工作面为研究对象,采用理论分析和现场实测方法进行深入研究。根据超前支承压力的分布曲线,定义了工作面前方巷道的3个变形阶段,分别为急速变形阶段、减速变形阶段和稳定变形阶段。急速变形阶段和减速变形阶段的分界点是超前支承压力和原岩应力的交点,减速变形阶段和稳定变形阶段的分界点是超前支承压力的峰值点。对j7401工作面开采过程中的超前支承压力和巷道变形分别进行观测,并采用最小二乘拟合方法分析整理观测数据。根据超前支承压力观测数据对巷道围岩变形阶段进行划分,急速变形阶段和减速变形阶段的分界点位于工作面前方8.1m,减速变形阶段和稳定变形阶段的分界点是工作面前方19.8m。根据巷道变形观测数据划分变形阶段,急速变形阶段和减速变形阶段的分界点位于工作面前方8.9m,减速变形阶段和稳定变形阶段的分界点是工作面前方20.1m。该划分方法的两个误差分别为0.8m和0.3m,证明根据超前支承压力划分巷道围岩变形阶段的方法可行,精度较高。

关 键 词:综放开采  超前支承压力  巷道变形阶段  超前影响范围  巷道变形  峰值位置
收稿时间:2019/7/8 0:00:00

Determination of the deformation stage of a fully mechanized caving face in the surrounding rock of mining roadway
QIN Hongyan,OUYANG Zhenhu,ZHAO Xidong,ZHANG Feng and TRAN MinhN guyen.Determination of the deformation stage of a fully mechanized caving face in the surrounding rock of mining roadway[J].Journal of Chongqing University(Natural Science Edition),2019,42(12):50-59.
Authors:QIN Hongyan  OUYANG Zhenhu  ZHAO Xidong  ZHANG Feng and TRAN MinhN guyen
Institution:Safety Engineering College, North China Institute of Science and Technology, Beijing 101601, P. R. China;Hebei Provincial Key Lab of Mine Disaster Prevention and Control, Langfang 065201, Hebei, P. R. China;Key Laboratory of Mine Thermo-motive Disaster and Prevention, Ministry of Education, Liaoning Technical University, Fuxin 123000, Liaoning, P. R. China,Safety Engineering College, North China Institute of Science and Technology, Beijing 101601, P. R. China;Hebei Provincial Key Lab of Mine Disaster Prevention and Control, Langfang 065201, Hebei, P. R. China,Safety Engineering College, North China Institute of Science and Technology, Beijing 101601, P. R. China;Hebei Provincial Key Lab of Mine Disaster Prevention and Control, Langfang 065201, Hebei, P. R. China,Key Laboratory of Mine Thermo-motive Disaster and Prevention, Ministry of Education, Liaoning Technical University, Fuxin 123000, Liaoning, P. R. China;State Key Laboratory of Coal Resources & Mine Safety, China University of Mining & Technology, Xuzhou 211116, Jiangsu, P. R. China and Key Laboratory of Mine Thermo-motive Disaster and Prevention, Ministry of Education, Liaoning Technical University, Fuxin 123000, Liaoning, P. R. China;Vietnam Coal-Mineral Industries Group and Coal Mining Investment Consulting Co. Ltd., Bac Giang 21000, Vietnam
Abstract:To analyze the deformation characteristics of the mining roadway located in front of the fully mechanized top-coal caving face, we researched the j7401 fully mechanized top-coal caving face of the Helin Coal Mine with theoretical analysis and field measurement. According to the distribution curve of the advanced abutment pressure, three deformation stages of the roadway ahead of the working face are defined, which are the quick deformation stage, the deceleration deformation stage, and the stable deformation stage. The cut-off point of quick deformation stage and deceleration stage is the intersection of advanced abutment pressure and the original rock stress. The cut-off point of the deceleration deformation stage and stable deformation stage is the peak of the advanced abutment pressure. In this work, the advanced abutment pressure and roadway deformation of j7401 working face in mining were observed respectively, and the observation data was analyzed by the method of least squares fitting. The deformation of the roadway surrounding rock was partitioned based on the advanced abutment pressure observation data:the cut-off point of quick deformation stage and deceleration stage was 8.1 m ahead of the working face, and the cut-off point of deceleration deformation phase and stable stage was 19.8 m ahead of the working face. The deformation was also partitioned based on the roadway deformation observation data, in which way the cut-off point of quick deformation stage and deceleration stage was 8.9 m in front of the working face, and the cut-off point of deceleration deformation phase and stable stage was 20.1 m ahead of the working face. The deviations of the two classification methods were respectively 0.8 m and 0.3 m, indicating the method to partition the roadway surrounding rock deformation stage based on the advanced abutment pressure observation data is feasible and the precision is high.
Keywords:fully mechanized top-coal caving mining  advanced abutment pressure  roadway deformation stage  advanced influence scope  roadway deformation  peak position
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号