首页 | 本学科首页   官方微博 | 高级检索  
     

解一类具有周期系数的Helmholtz方程的小波谱方法
引用本文:冯立新. 解一类具有周期系数的Helmholtz方程的小波谱方法[J]. 黑龙江大学自然科学学报, 2004, 21(3): 30-34
作者姓名:冯立新
作者单位:黑龙江大学,数学科学学院,黑龙江,哈尔滨,150080
摘    要:
在现代光学理论及应用中,经常要讨论周期结构介质中的散射问题,其中周期结构通常被称为衍射光栅。在某些假设条件下,这些问题可用Helmholtz型的方程来描述。考虑一类具有周期系数的Helmholtz方程,它是一类衍射光栅问题的数学模型,研究这类问题的数值解法。采用的策略是小波谱方法,即在一个坐标方向使用谱方法,在另一个坐标方向采用小波Galerkin方法,得到相应的误差估计。

关 键 词:Helmholtz方程  周期结构  谱方法  小波
文章编号:1001-7011(2004)03-0030-05
修稿时间:2003-04-15

Wavelet-spectral methods for solving a class of Helmholtz equations with periodic coefficients
FENG Li-xing. Wavelet-spectral methods for solving a class of Helmholtz equations with periodic coefficients[J]. Journal of Natural Science of Heilongjiang University, 2004, 21(3): 30-34
Authors:FENG Li-xing
Abstract:
The scattering problem in periodic structural mediums often discussed in the theory and applications of modern micro-optics, where periodic structural mediums are often called diffraction gratings. Under some assumptions, these problems may be described by a class of Helmhotz equations with periodic coefficients. Numerical method for solving the class of equations is studied. The used strategy is the wavelet-spectral methods, i.e., the spectral method is used in an axial direction and the wavelet Galarkin method is used in another axial direction. Error estimates for the wavelet-spectral methods are established.
Keywords:Helmholtz equations  periodic structure  spectral method  wavelet
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号