首页 | 本学科首页   官方微博 | 高级检索  
     

分数微积分的两种系统建模方法
引用本文:王振滨,曹广益. 分数微积分的两种系统建模方法[J]. 系统仿真学报, 2004, 16(4): 810-812
作者姓名:王振滨  曹广益
作者单位:上海交通大学自动化系燃料电池研究所,上海,200030
基金项目:上海市科技发展基金资助项目(011607033)
摘    要:介绍了Riemann-Liouville和Caputo分数微积分的定义及其部分性质。给出了分数阶线性定常微分方程的一般定义形式,并指出它是整数阶线性定常微分方程的推广。给出分数阶线性定常系统的传递函数和状态方程描述,并与整数阶线性定常系统的传递函数和状态方程作一比较,指出它们的异同点。运用拉普拉斯变换推导出其两种求解方法:直接求解法和状态空间法。最后给出一个实例说明这两种方法的有效性。

关 键 词:分数微积分  分数阶微分方程  分数阶微分系统  系统建模
文章编号:1004-731X(2004)04-0810-03
修稿时间:2003-03-27

Two System Modeling Methods Using Fractional Calculus
WANG Zhen-bin,CAO Guang-yi. Two System Modeling Methods Using Fractional Calculus[J]. Journal of System Simulation, 2004, 16(4): 810-812
Authors:WANG Zhen-bin  CAO Guang-yi
Abstract:An introduction of the definitions of Riemann-Liouville and Caputo fractional calculus is given as well as some of their properties. The general form of fractional linear time-invariant (LTI) equations is proposed, and it is pointed out that they are the generalizations of integer LTI equations. The transfer function and the state-space representation are given for fractional LTI systems, and a comparison is made with integer LTI systems, and their differences and similarities are also pointed out. Two solving methods are deduced using Laplace transform: the direct solving method and the state-space method. Finally an example is given to show the effectiveness of the two methods aforementioned.
Keywords:fractional calculus  fractional-order differential equations  fractional-order differential systems  system modeling  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号