首页 | 本学科首页   官方微博 | 高级检索  
     

应用连续小波变换提取机械故障的特征
引用本文:刘刚,屈梁生. 应用连续小波变换提取机械故障的特征[J]. 西安交通大学学报, 2000, 34(11): 74-77
作者姓名:刘刚  屈梁生
作者单位:西安交通大学,710049,西安
摘    要:针对机械信号的特征和小小变换的特点,论证了机械信号的连续小波可分解特性,提出了信号的时间-小波能量谱和尺度-小波能量谱的概念,同时,利用信号经连续Morlet小波变换后在时间-尺度域内的不同能量分布特性,依据信号的尺度-小波能量谱分布特性,对螺杆泵减速器和滚动轴承这两类不同机械的信号进行了特征提取,结果表明,应用机械信号的尺度-小波能量谱进行特征提取,更好地利用了小波变换的恒Q带通滤波器性质,可以

关 键 词:连续小波变换 故障诊断 机械故障

Feature Extraction of Mechanical Faults Based on the Continuous Wavelet Transform
Liu Gang,Qu Liangsheng. Feature Extraction of Mechanical Faults Based on the Continuous Wavelet Transform[J]. Journal of Xi'an Jiaotong University, 2000, 34(11): 74-77
Authors:Liu Gang  Qu Liangsheng
Abstract:When machine is operating under different abnormal states, its characteristics would be reflected by the vibration signal. The mechanical signals can well be decomposed using wavelet transform in time scale domains. Obtained are the scale wavelet power spectrum and time wavelet power spectrum of signal. Characteristics of the signals can be extracted well from the reducer and bearing of different states using the scale wavelet power spectrum for diagnosing the faults in practice.
Keywords:continuous wavelet transform  fault diagnosis  feature extraction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号