首页 | 本学科首页   官方微博 | 高级检索  
     

可堆叠重校准特征金字塔目标检测方法
引用本文:陈乔松,刘宇,张冶,谭彬,邓欣,王进. 可堆叠重校准特征金字塔目标检测方法[J]. 重庆邮电大学学报(自然科学版), 2022, 34(3): 402-409
作者姓名:陈乔松  刘宇  张冶  谭彬  邓欣  王进
作者单位:重庆邮电大学 数据工程与可视计算重庆市重点实验室,重庆 400065
基金项目:国家自然科学基金(61806033)
摘    要:无人机、车载识别等边缘设备应用日益增长,对模型参数量、检测速度以及精度提出了进一步的要求。为了提高目标检测在这些领域的项目落地能力,提出一种可堆叠重校准特征金字塔模块以及改进的SR-YOLOv3目标检测网络,使用对边缘设备友好的主干网络作为特征提取网络,通过堆叠轻量的金字塔模块,在减少参数数量的同时,提高检测精度及速度。在公开的目标检测数据集PascalVOC上进行性能评估,实验结果显示,该改进算法的参数量有明显下降,且计算速度得到提升。

关 键 词:目标检测  特征金字塔  注意力
收稿时间:2020-09-03
修稿时间:2022-03-18

Object detection based on stackable recalibrated feature pyramid networks
CHEN Qiaosong,LIU Yu,ZHANG Ye,TAN Bing,DENG Xin,WANG Jin. Object detection based on stackable recalibrated feature pyramid networks[J]. Journal of Chongqing University of Posts and Telecommunications, 2022, 34(3): 402-409
Authors:CHEN Qiaosong  LIU Yu  ZHANG Ye  TAN Bing  DENG Xin  WANG Jin
Affiliation:Chongqing Key Laboratory of Data Engineering and Visual Computing, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
Abstract:With the increasing application of edge devices such as unmanned aerial vehicles and vehicle identification, further requirements are put forward on the amount of model parameters, detection speed and accuracy. Therefore, the paper proposes a stackable recalibrated feature pyramid network and an improved SR-YOLOv3 object detection network, using a backbone network that is friendly to edge devices as a feature extraction network. The lightweight pyramid module reduces the number of parameters while increasing the detection accuracy and speed. The experimental results show that based on the performance evaluation on the public target detection dataset PascalVOC, the parameter amount of the improved algorithm has dropped significantly, and the calculation speed has also been improved.
Keywords:object detection  feature pyramid network  attention
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号