首页 | 本学科首页   官方微博 | 高级检索  
     

短时交通流混沌预测方法的比较
引用本文:李松,刘力军,郭海玲. 短时交通流混沌预测方法的比较[J]. 系统工程, 2009, 0(9)
作者姓名:李松  刘力军  郭海玲
作者单位:河北大学管理学院;河北经济贸易大学旅游学院;
基金项目:国家自然科学基金资助项目(50478088); 河北省科学技术研究与发展项目(07276933)
摘    要:针对传统的应用数学模型方法在短时交通流预测精度和实时性方面存在的问题,提出了将Volterra滤波器自适应预测模型用于短时交通流的实时预测。为提高预测精度,在Volterra滤波系数计算过程中采用归一化最小均方自适应算法进行多次训练。应用该预测模型对几个典型的非线性系统进行预测,验证了算法的准确性。然后再用此方法对微观实测交通流的时间序列进行实证分析。仿真结果表明,该预测模型对实测交通流时间序列具有很好的预测效果,可以满足实时交通流预测的需要。

关 键 词:交通工程  交通流混沌  自适应预测  Volterra滤波器  

Comparative of the Predictive Method of Chaos in Short-term Traffic Flow
LI Song,LIU Li-jun,GUO Hai-ling. Comparative of the Predictive Method of Chaos in Short-term Traffic Flow[J]. Systems Engineering, 2009, 0(9)
Authors:LI Song  LIU Li-jun  GUO Hai-ling
Affiliation:LI Song1,LIU Li-jun2,GUO Hai-ling1(1.School of Management,Hebei University,Baoding 071002,China,2.School of Tourism,Heibe University of Economics and Business,Shijiazhuang 050061,China)
Abstract:Directed at the problems of the prediction precision and real time problem using mathematical model for short-time traffic flow,a real-time adaptive forecasting model for short-term traffic flow based on nonlinear Volterra filter is presented.The optimal Volterra filter coefficients are updated by using normalized least mean square(NLMS) adaptive algorithm in order to improve prediction.Firstly,the time series of several typical nonlinear systems are predicted by the method in order to confirm the veracity ...
Keywords:Traffic Engineering  Chaos in Traffic Flow  Adaptive Prediction  Volterra Filter  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号