首页 | 本学科首页   官方微博 | 高级检索  
     

利用SVM-LSTM-DBN的短期光伏发电预测方法
引用本文:卿会,郭军红,李薇,亢朋朋,王金明,潘张榕. 利用SVM-LSTM-DBN的短期光伏发电预测方法[J]. 华侨大学学报(自然科学版), 2022, 43(3): 371-378. DOI: 10.11830/ISSN.1000-5013.202104018
作者姓名:卿会  郭军红  李薇  亢朋朋  王金明  潘张榕
作者单位:1. 华北电力大学 环境科学与工程学院, 北京 102206;2. 华北电力大学 资源环境系统优化教育部重点实验室, 北京 102206;3. 国网新疆电力有限公司, 新疆 乌鲁木齐 830002;4. 国网新疆电力有限公司 阿勒泰供电公司, 新疆 阿勒泰 836500
基金项目:国家重点研发计划项目-战略性国际科技创新合作重点专项(2018YFE0208400);
摘    要:为解决传统预测算法的不足,利用深度信念网络(DBN)耦合支持向量机(SVM)和长短期记忆神经网络(LSTM),提出一种新的光伏功率组合预测方法.分别构建以高斯径向基函数为核函数的支持向量机预测模型、4层长短期记忆神经网络为单项预测模型,通过深度信念网络组合,优化预测结果并输出.根据实际出力和预测结果的误差,利用DBN动态调整以获得最优值,进一步验证SVM-LSTM-DBN模型的有效性和准确性,并以新疆维吾尔自治区某光伏电站的实测数据进行仿真验证.结果表明:基于SVM-LSTM-DBN组合的光伏出力预测模型与单一模型相比,预测精度明显提高.

关 键 词:光伏发电  光伏出力预测模型  支持向量机  长短期记忆神经网络  深度信念网络

Short-Term Photovoltaic Power Forecasting Method Based on SVM-LSTM-DBN
QING Hui,GUO Junhong,LI Wei,KANG Pengpeng,WANG Jinming,PAN Zhangrong. Short-Term Photovoltaic Power Forecasting Method Based on SVM-LSTM-DBN[J]. Journal of Huaqiao University(Natural Science), 2022, 43(3): 371-378. DOI: 10.11830/ISSN.1000-5013.202104018
Authors:QING Hui  GUO Junhong  LI Wei  KANG Pengpeng  WANG Jinming  PAN Zhangrong
Affiliation:1. College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; 1. Key Laboratory of Resources and Environment System Optimization of Ministry of Education, North China Electric Power University, Beijing
Abstract:In order to solve the shortcomings of traditional forecasting algorithms, a new combination prediction method of photovoltaic power is proposed by using deep belief network(DBN)coupled support vector machine(SVM)and long short-term memory neural network(LSTM). The support vector machine prediction model with the kernel function of Gaussian radial basis function and the 4-layer long-short-term memory neural network as a single prediction model. Through the combination of deep belief networks, the prediction results are optimized and output. According to the actual output and the error of the prediction results, the DBN is used for dynamic adjustment to obtain optimal value, to further verify the validity and accuracy of the SVM-LSTM-DBN model. To take simulate and verify the actual measurement data of a photovoltaic power station in Xinjiang Uygur Autonomous Region. The results show that: compare the photovoltaic output prediction model based on the combination of SVM-LSTM-DBN and a single model, the prediction accuracy is significantly improved.
Keywords:photovoltaic power generation  photovoltaic output prediction model  support vector machine  long and short-term memory neural network  deep belief network
本文献已被 万方数据 等数据库收录!
点击此处可从《华侨大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华侨大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号