首页 | 本学科首页   官方微博 | 高级检索  
     

二阶变系数齐线性常微分方程的求解
引用本文:方辉平, 叶鸣,. 二阶变系数齐线性常微分方程的求解[J]. 重庆工商大学学报(自然科学版), 2011, 28(1): 14-17
作者姓名:方辉平   叶鸣  
作者单位:黄山学院数学系,安徽,黄山,245041
基金项目:安徽省高校省级自然科学基金,黄山学院教研重点项目
摘    要:
给出了二阶变系数齐线性常微分方程一种新的求解方法.将二阶变系数齐线性常微分方程问题转化为Riccati方程来求解,讨论了二阶变系数齐线性常微分方程的通解和初值问题,得到初值问题近似解的理论基础、计算方法和误差估计.

关 键 词:二阶变系数齐线性常微分方程  Riccati方程  误差估计

Solution to Second-order Homogeneous-linear Ordinary Differential Equations with Variable Coefficients
FANG Hui-ping; YE Ming. Solution to Second-order Homogeneous-linear Ordinary Differential Equations with Variable Coefficients[J]. Journal of Chongqing Technology and Business University:Natural Science Edition, 2011, 28(1): 14-17
Authors:FANG Hui-ping   YE Ming
Abstract:
This paper presents a new method of solution to the second order homogeneous linear ordinary differential equation with variable coefficients.The second-order homogeneous linear ordinary differential equation with variable coefficients can be translated to Riccati equation and its general solution and initial value problem were discussed.The basic principle,calculating method and error estimation were obtained about approximate solution of initial value problem.
Keywords:second-order homogeneous linear ODE with variable coefficients   Riccati Equation   error estimate  
本文献已被 万方数据 等数据库收录!
点击此处可从《重庆工商大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆工商大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号