首页 | 本学科首页   官方微博 | 高级检索  
     

BP神经网络在储层物性参数预测中的应用——以梁家楼油田沙三中为例
引用本文:黄述旺,窦齐丰,彭仕宓,王韶华,刘伟. BP神经网络在储层物性参数预测中的应用——以梁家楼油田沙三中为例[J]. 西北大学学报(自然科学版), 2002, 32(3): 271-274
作者姓名:黄述旺  窦齐丰  彭仕宓  王韶华  刘伟
作者单位:[1]石油大学资源与信息学院,北京102249 [2]中国石化集团中原油田采油三厂地质大队,山东莘县242393
基金项目:中国石油天然气总公司“九五”油气勘探科技工程资助项目 (970 2 0 8)
摘    要:在储层四性特征及其四性关系研究的基础上,应用BP神经网络方法,对梁家楼油田沙三中储层的物性参数(孔隙度、渗透率)进行了预测,并对其预测精度进行了检验。将神经网络解释结果与常规数理统计方法精度对比可见,神经网络法的参数预测精度有较大的提高,显示出BP神经网络法在储层参数预测中的优势与应用潜能。

关 键 词:物性参数 梁家楼油田 BP神经网络 孔隙度 渗透率 精度检验 沙三中储层 预测方法
文章编号:1000-274X(2002)03-0271-04
修稿时间:2001-09-03

Application of BP neural network in reservoir parameter prediction of Es23 in Liangjialou Oilfield
HUANG Shu-wang ,DOU Qi-feng ,PENG Shi-mi ,WANG Shao-hua ,LIU Wei. Application of BP neural network in reservoir parameter prediction of Es23 in Liangjialou Oilfield[J]. Journal of Northwest University(Natural Science Edition), 2002, 32(3): 271-274
Authors:HUANG Shu-wang   DOU Qi-feng   PENG Shi-mi   WANG Shao-hua   LIU Wei
Affiliation:HUANG Shu-wang 1,DOU Qi-feng 1,PENG Shi-mi 1,WANG Shao-hua 1,LIU Wei 2
Abstract:On the basis of investigating reservoir's characteristics of lithologic, physical, electrical and oil-bearing properties and the relationship of them, the prediction of the reservoir lithologic parameter (shale content) and physical parameters (porosity and permeability) were carried out with the method of BP neural network. The prediction accuracy is tested. Through the accuracy correlation between the neural network interpretation results and the conventional mathematical statistics method, it is proved that the parameter prediction accuracy of the former is greatly improved. Moreover, the advantage and application potential in reservoir parameter prediction of BP neural network is further verified.
Keywords:BP neural network  porosity  permeability  accuracy test
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号