首页 | 本学科首页   官方微博 | 高级检索  
     

圆盘状晶体生长问题的摄动分析
引用本文:杨永,陈明文,王自东,孙仁济. 圆盘状晶体生长问题的摄动分析[J]. 北京联合大学学报(自然科学版), 2005, 19(4): 35-38
作者姓名:杨永  陈明文  王自东  孙仁济
作者单位:北京科技大学,应用科学学院,北京,100083;北京科技大学,材料科学与工程学院,北京,100083
基金项目:国家重点基础研究发展计划(973计划)
摘    要:圆盘状晶体生长是自由晶体生长中典型的生长模式,在其生长过程中顶部和底部的生长速度缓慢,而边缘部分由于热扩散机制的作用而生长速度较快,容易形成花样.由于边缘界面上存在小扰动的作用,从而表现为数学模型的边界条件中出现一个小参数.通过用摄动方法对边界条件中含有小参数的问题进行分析,将其转化为较容易求解的问题,然后用数学物理的方法求出这些问题的解,最后对解的形式进行分析,得到了与实验相符的结果,即固相中的温度场呈现出指数型振荡衰减.

关 键 词:圆盘状晶体  摄动分析  晶体生长  Bessel方程
文章编号:1005-0310(2005)04-0035-04
收稿时间:2005-09-15
修稿时间:2005-09-15

The Asymptotic Analysis of Disc-like Crystal Growth
YANG Yong,CHEN Ming-wen,WANG Zi-dong,SUN Ren-ji. The Asymptotic Analysis of Disc-like Crystal Growth[J]. Journal of Beijing Union University, 2005, 19(4): 35-38
Authors:YANG Yong  CHEN Ming-wen  WANG Zi-dong  SUN Ren-ji
Affiliation:1. Applied Science School, University of Science and Technology Beijing, Beijing 100083, China; 2. Material Science and Engineering School, University of Science and Technology Beijing, Beijing 100083, China
Abstract:Disc-like crystal growth is a typical prototype of free crystal growth. The growth of the top and bottom interface is very slow while the growth of its side-interface is much faster owing to heat diffusion mechanism, thus producing a pattern formation. Because of the perturbation on the side-interface, the boundary condition of mathematic model appears with a small parameter. We anayze the problem whose boundary condition produces a small parameter by asymptotic method and convert several problems to easily solved ones. Then mathematic and physical methods are used to work out the problems. Finally by analyzing the form of the mathematic result, we find that the temperature filed of crystal growth presents an oscillatory and exponentially descending pattern, a result corresponding to the experiment.
Keywords:disc-like crystal   asymptotic analysis   crystal growth    Bessel equation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号