首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波-Contourlet变换的区域能量加权图像融合算法
引用本文:宋亚军,倪国强,高昆. 基于小波-Contourlet变换的区域能量加权图像融合算法[J]. 北京理工大学学报, 2008, 28(2): 168-172
作者姓名:宋亚军  倪国强  高昆
作者单位:北京理工大学信息科学技术学院光电工程系,北京,100081;北京理工大学信息科学技术学院光电工程系,北京,100081;北京理工大学信息科学技术学院光电工程系,北京,100081
基金项目:国家重点基础研究发展计划(973计划)
摘    要:为了消除Contourlet变换中拉普拉斯金字塔分解存在的信息冗余,提出了一种基于小波-Contourlet变换的图像融合算法.该算法采用了不同的窗口函数计算图像高频分量和低频分量的区域能量;以区域能量计算的归一化权值对各小波-Contourlet系数进行加权,得到融合小波-Contourlet系数.实验结果和均值、方差、熵与交叉熵等客观评价数据表明,在相同融合规则下,小波-Contourlet变换能够取得比Contourlet变换更好的结果;在相同变换条件下,基于不同窗口函数的区域能量融合规则的融合效果好于基于均值窗口函数的区域能量融合规则和低频采用均值与高频取最大值的融合规则.

关 键 词:小波-Contourlet变换  图像融合  融合规则  区域能量
文章编号:1001-0645(2008)02-0168-05
收稿时间:2007-09-14
修稿时间:2007-09-14

Regional Energy Weighting Image Fusion Algorithm by Wavelet Based Contourlet Transform
SONG Ya-jun,NI Guo-qiang and GAO Kun. Regional Energy Weighting Image Fusion Algorithm by Wavelet Based Contourlet Transform[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2008, 28(2): 168-172
Authors:SONG Ya-jun  NI Guo-qiang  GAO Kun
Affiliation:Department of Optical Engineering; School of Information Science and Technology; Beijing Institute of Technology; Beijing 100081; China;Department of Optical Engineering; School of Information Science and Technology; Beijing Institute of Technology; Beijing 100081; China;Department of Optical Engineering; School of Information Science and Technology; Beijing Institute of Technology; Beijing 100081; China
Abstract:In order to reduce the redundancy of Laplacian pyramids decomposing in contourlet transform(CT).An image fusion algorithm is proposed with the wavelet based contourlet transform(WBCT).By employing different masks,the algorithm integrates the approximation coefficients and the detail coefficients differently according to the weights,which are calculated with the energy of the corresponding neighbor region of the WBCT coefficients.Evaluation of the experimental results according to both the subjective and objective criteria,including the average,mean square error,entropy and cross entropy,it is demonstrated that algorithms based on WBCT are more effective than the ones based on CT with the same fusion rules,and that the fusion rule based on different masks can attain better results than the ones of average mask and traditional method.
Keywords:wavelet-based contourlet transform   image fusion   fusion rule   regional energy
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号