首页 | 本学科首页   官方微博 | 高级检索  
     

基于递归小波网络的直升机动力学模型研究
引用本文:林乔木,张允昌,张辽,李威. 基于递归小波网络的直升机动力学模型研究[J]. 系统仿真学报, 2007, 19(4): 716-719
作者姓名:林乔木  张允昌  张辽  李威
作者单位:1. 海军大连舰艇学院,大连,116018
2. 空军哈尔滨飞行仿真技术研究所,哈尔滨,150001
摘    要:提出一种基于递归小波网络建立直升机动力学模型的方法,给出了模型结构并利用粒子群优化算法对小波网络权参数进行调整。这种网络模型利用内部状态反馈来描述系统的非线性动力学特性,不必事先确定系统模型的类别和阶次,直接建立操纵量与加速度、角速度等变量之间的对应关系,从而避免了建立复杂的气动系数、气动导数模型的过程。与传统的机理模型相比,该模型具有结构简单、并行解算程度高、运算速度快的特点。在某型直升机飞行模拟器中取得了良好的应用效果。

关 键 词:直升机  动力学模型  递归小波网络  粒子群优化
文章编号:1004-731X(2007)04-0716-04
收稿时间:2005-12-08
修稿时间:2007-01-15

Study of Helicopter Dynamic Model Based on Recurrent Wavelet Neural Networks
LIN Qiao-mu,ZHANG Yun-chang,ZHANG Liao,LI Wei. Study of Helicopter Dynamic Model Based on Recurrent Wavelet Neural Networks[J]. Journal of System Simulation, 2007, 19(4): 716-719
Authors:LIN Qiao-mu  ZHANG Yun-chang  ZHANG Liao  LI Wei
Affiliation:1 .The Vessels Institute Of Navy, Dalian 116018, China; 2. The Flight Simulation Research Institute of Air Force, Harbin 150001, China
Abstract:A new modeling method for helicopter dynamic simulation model using recurrent wavelet neural networks was proposed.The whole model was given and its unknown parameters were tuned using a Particle Swarm Optimization method.This kind of network model is used the feedback of internal status to describe the system characteristics of nonlinear dynamics instead of that the system model's sort and order must be determinated at first.It is directly established the corresponding relation between the variants of control,acceleration and angle rate so as to avoid the complex course that the models of aerodynamic coefficient and derivative are established.Compared with the traditional mechanism model,the model obtained with the method owns the following advantages,namely simple structure,highly parallel solving and fast speed.Project application to a helicopter simulator demonstrates the effectiveness of the algorithm.
Keywords:helicopter  dynamic model  recurrent wavelet neural networks  particle swarm optimization  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号