首页 | 本学科首页   官方微博 | 高级检索  
     检索      

数值模拟入射斜激波/平板湍流边界层干扰流动
引用本文:闫文辉,吴小虹,徐悦.数值模拟入射斜激波/平板湍流边界层干扰流动[J].空军工程大学学报,2012(2):11-15.
作者姓名:闫文辉  吴小虹  徐悦
作者单位:1.中国航空研究院, 北京,100012;2.中航工业黎明航空发动机集团公司技术中心设计所,辽宁沈阳,110043
基金项目:国家自然科学基金资助项目(10904178)
摘    要:应用GAO-YONG可压缩湍流模型数值计算了入射斜激波/平板湍流边界层相互干扰现象。计算程序中的对流项、扩散项分别采用AUSM格式和中心差分格式离散,并用多步Runge-Kutta显式时间推进法求解空间离散后的控制方程。计算中包含了无分离流动、初始分离流动以及较大分离流动等多个情况,比较了平板壁面压力、法向平均速度剖面、壁面摩阻系数Cf以及壁面斯坦顿数St等的计算结果与实验值。结果发现:GAO-YONG可压缩湍流模型能够很好地预测入射斜激波/平板湍流边界层相互干扰下的无分离以及小分离流动,对高马赫数下的大分离流动也能得到较合理的结果,但再附点之后的壁面摩阻系数以及斯坦顿数的计算值不够理想。

关 键 词:激波边界层干扰  数值模拟  GAO-YONG可压缩湍流模型

Numerical Simulation of Incident Oblique Shock-wave Flat Plate Turbulent Boundary Layer Interaction
YAN Wen-hui,WU Xiao-hong,XU Yue.Numerical Simulation of Incident Oblique Shock-wave Flat Plate Turbulent Boundary Layer Interaction[J].Journal of Air Force Engineering University(Natural Science Edition),2012(2):11-15.
Authors:YAN Wen-hui  WU Xiao-hong  XU Yue
Abstract:Numerical simulations of oblique Shock-wave turbulent boundary-layer interaction on flat plate using GAO-YONG compressible turbulent model are presented. Convection terms and diffusion terms are calculated using AUSM scheme and CD (center difference) scheme in the present procedure, respectively. The Runge-Kutta time marching method is employed to solve space discrete control equations. This paper presents three cases with different incident shock angles, which induce attached and separation flows. Compressions between the computation and experiment are carried out including surface pressure distribution, mean velocity profiles, wall skin friction Cf and Stanton number. Good agreements between the calculations and experiment are obtained for the attached flow and incipient separation flow. Meanwhile, GAO-YONG turbulent model can predict distinct separation flow under the intensity interaction at high Mach number.
Keywords:shock-wave boundary-layer interaction  numerical simulation  GAO-YONG compressible turbulent model
点击此处可从《空军工程大学学报》浏览原始摘要信息
点击此处可从《空军工程大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号