首页 | 本学科首页   官方微博 | 高级检索  
     

压缩感知理论及其重构算法
引用本文:叶志申,张绍钧,黄仁泰. 压缩感知理论及其重构算法[J]. 东莞理工学院学报, 2010, 17(3): 32-35
作者姓名:叶志申  张绍钧  黄仁泰
作者单位:东莞市大朗供电公司,广东东莞,523808;东莞万里集团有限公司,广东东莞,523808;东莞理工学院,计算机学院,广东东莞,523808
摘    要:压缩感知理论为信号采集技术带来了革命性的突破,它采用非自适应线性投影来保持信号的原始结构,以远低于奈奎斯特频率对信号进行采样,通过数值最优化问题准确重构出原始信号。分析了信号的稀疏表示、压缩感知的基本理论,设计了两种主要的重构算法——匹配跟踪算法、互补匹配跟踪算法,并对两种算法的特点进行了对比。

关 键 词:压缩感知  稀疏性  信号重构  匹配跟踪

Compressed Sensing Theory and Its Reconstruction Algorithm
YE Zhi-shen,ZHANG Shao-jun,HUANG Ren-tai. Compressed Sensing Theory and Its Reconstruction Algorithm[J]. Journal of Dongguan Institute of Technology, 2010, 17(3): 32-35
Authors:YE Zhi-shen  ZHANG Shao-jun  HUANG Ren-tai
Affiliation:YE Zhi-shen~1 ZHANG Shao-jun~2 HUANG Ren-tai~3 (1.Power Distribution Company of Dalang Town,Dongguan 523808,China,2.Wanli Corporation Limited,3.College of Computer,Dongguan University of Technology,China)
Abstract:The compressed sensing brings about a revolutionary breakthrough.It maintains the original signal structure by non-adaptive linear projection and samples the signal at much lower sampling rates than the Nyquist sampling rates.The signal can be exactly reconstructed by optimization.We analysyed the basic theory of compressed sensing and its two signal reconstruction algorithms including orthogonal matching pursuit and complementary orthogonal matching pursuit,and introduced the main application areas of the ...
Keywords:compressed sensing  sparsity  signal reconstruction  matching pursuit  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号